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Abstract 

Nowadays, buildings with smart grid interaction are a new platform that allows 

implementation of innovative control technology in order to save energy and reduce 

cost of energy. It connects technology to the building environment making it 

beneficial to the residents of the building as well as the environment outside the 

building. The feature dynamic pricing of the smart grid leads to smart use of 

electricity in a building allowing shutdown and start-up of appliances based on high 

and low peak periods of dynamic pricing, respectively. Due to large HVAC energy 

consumption particularly heating cost during winters in the office buildings at 

Michigan Technological University, the thesis focuses on optimizing the energy use 

for HVAC system.  A mathematical energy model pertaining to HVAC system of 

the building is developed in this thesis. Model Predictive Control (MPC) is 

implemented on the building energy model to develop two controllers having 

different cost functions, namely minimize power consumption and minimize price 

of power consumption. The data used for the building energy model is collected 

from one of the office buildings in Michigan Technological University. Both MPC 

controllers are compared to the existing On/Off controller in the building to 

determine the better controller. Further, the model is extended to six buildings 

connected to the same node in a smart grid. Algorithm of the better MPC controller 

is modified in order to ensure that the total power consumption (HVAC and Non-

HVAC) of six buildings lies within the maximum allowable load at the node. 

Results demonstrate that MPC benefits the consumer as well as keeps the peak loads 

on the grid under limit.  
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Chapter 1   
 

1 Introduction 
 

With the growing energy consumption, the need for planned energy consumption 

has gained a focus in past few decades. Wastage of electricity (through human 

negligence, line losses, or damages to the grid by natural calamities), rising fuel 

costs and greenhouse gas emissions, needs to be controlled using advanced 

technology. This technology enables planned energy consumption, prevents any 

wastage of energy and controls emission of CO2. In short, technology which plans 

and implements energy management smartly and makes the power grid robust and 

reliable is the need of the hour. Thus ‘Smart Grid’ and ‘Smart Buildings’ are a need 

of the 21
st
 century.  

The following sub-sections deal with getting familiar with the concept of smart 

buildings and smart grid, the building-grid dynamics and mathematical modelling 

for the grid as well as that for energy consumption by the building in smart grid.  

 

 

1.1 Background 

1.1.1 Smart Buildings 

Institute for Building Efficiency [1] provides an overview to ‘Smart Building’ 

concept. A smart building connects many aspects together for energy optimization. 

It connects all the systems of the building so that they share information and can 

turn down their operation when it is not needed. For example, an air-conditioner is 

connected to (1) sensor which detects temperature outside the building, (2) a sensor 
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which detects presence of people in the room, and (3) a sensor which detects the 

frequency of opening of door of the room. Using the information from all these 

sensors, the air-conditioner determines what temperature it should maintain and it 

can reduce the cooling if there is nobody in the room. This concept is applied to 

lighting system, heating system, security, etc. Due to such an advanced control 

system, electricity is saved as well as people get a comfortable environment for 

working.  

As described by Institute for Building Efficiency [1], the use of sensors is important 

in a smart building advanced energy control. Järvinen and Vuorimaa [2] explain the 

importance of position of sensors. They conducted experiments to determine 

optimum position for sensors and validated the results. The optimum position for 

sensors allows lights in a room to remain OFF if a person is only passing along the 

hallway outside the room.  

A smart building not only cuts down on power consumption but when paired with 

smart grid helps in reducing the cost of electricity for the consumers. This 

interaction of a building with smart grid is discussed in subsequent sections.  

Certain systems in the smart building are used for detecting the amount of 

greenhouse gas emissions and tracking the source of the emissions so that it can 

filter and process the gases before they are released into the atmosphere. As the fuel 

for the vehicles is depleting, the use of hybrid electrical vehicles will increase in 

near future. A smart building will provide charging ports for the hybrid electrical 

vehicles. Thus smart buildings connect technology to the environment. Hledik [3] 

describes how CO2 emissions can be reduced to a great extent (reduction by 16% by 

the year 2030) by the rigorous use of smart meters, dynamic pricing, smart grid 

infrastructure and use of renewables and hybrid vehicles. in a smart building. 
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1.1.2 Smart Building-Smart Grid Dynamics 

Reference [4] gives an insight into smart grids. Smart grids were first established in 

20th century [4] by turning the traditional grids into many interconnected local 

grids. A grid is vulnerable to natural disasters, leading to damage in the distribution 

grid. A smart grid uses improved technology to prevent or detect faults thus making 

the grid a more reliable source of energy. Additionally, a smart grid is used most 

effectively, if the building that it is connected to is a ‘Smart Building’.  

In the traditional electrical grids, the energy flow was unidirectional, i.e. from the 

grid to the building. But nowadays even buildings produce energy to some extent 

through the use of solar panels, electrical vehicle batteries, etc. which is supplied to 

the grid. Traditional grids become unstable if there are many feed-in points for input 

of energy and even if some amount of energy is added at the distribution level, the 

transmission level cannot sustain it. Smart grids can accommodate large amount of 

energy supplied by buildings. Thus the smart grid enables bidirectional flow of 

energy and also manages the safety issues arising out of the reverse flow. For 

example, sometimes there is a rapid rise in load on the grid, e.g. rapid rise in HVAC 

system usage during extreme environmental conditions. Traditional grids use a 

couple of standby generators along with a large generator, to deal with the rapid 

load rise. In smart grids, instead of using standby generators, a few clients are 

warned about the overload and requested to reduce the load temporarily.  

Dynamic pricing is a variable pricing to prevent overload on the grid. The cost of 

electricity is high during peak loads and the cost is low during low load periods. The 

smart grid informs the building about the high and low peak periods, so that the 

building can take appropriate actions. It is possible for the consumer to adjust the 

power consumption by scheduling the low priority devices during the low peak 

periods. This not only reduces the total cost of electricity for the consumer but also 

helps in flattening the peaks in the load profile of the smart grid.  
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A smart grid allows communication between supplier and consumers. As the cost of 

energy is higher at peak load periods and low at low load periods, the suppliers can 

strategically plan the sale of energy. Suppliers can use flexible generators, to sell 

energy according to low/peak periods for maximum profit. Smart grids enable the 

use of advanced sensors in the buildings e.g. security systems against fire that shut 

off the power and make urgent calls to safety services.  

Setting up smart grid with non-compatible technology is pointless. Smart grid must 

be supported with technology capable of materializing the ideas and advantages of 

smart grids. Brown [5] gives an overview of the advanced technology used for smart 

grid implementation and the impact of automation and advanced metering on the 

distribution system design.  Hart [6] mentions the use of Advanced Metering 

Infrastructure (AMI) to realize the efficient working of a smart grid. AMI carries out 

most of the functions of smart grid like 2-way communication, detecting technical 

and non-technical losses, self-healing, utility billing and integration of renewable 

sources into the grid.  

Similar to AMI, wireless sensor network (WSN) can also be used in a smart grid. 

WSN carries out functions just like AMI in addition to being a low-cost solution for 

smart grid. Gungor, et. al. [7] investigated the challenges for setting WSN but in 

spite of the challenges mentioned, it has a very bright future. To get an overall idea 

about the working of smart grid, one can refer to [8] ‘Semantic Information 

Modelling for Emerging Applications in Smart Grid’ (2012) which has a derived 

semantic model for smart grid based on the detailed information about functioning 

of smart grid including the type of electric appliances used in the building and the 

application of smart grid.  
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1.2  Case studies: Benefits of Smart Building in Smart Grid 

Tejani, et. al. [9] carried out an experiment to prove that more energy is saved with 

the use of smart technology in a smart home. A smart home consists of - 

o Wireless internet connection 

o Smart gateway – it connects the different systems of the home to each other and to 

external services through the internet connection.  

o Sensors – few sensors gather information from the devices and send it to 

controller; few sensors send the processed signals from the controllers back to the 

devices.  

o Standard appliances/devices 

While experiments were conducted to calculate the amount of energy saved with the 

smart gateway control ‘ON’, data was collected for each of the appliances in each 

room of the house with and without smart gateway control over a period of one year 

(so that variation is recorded for all seasons). From the data it was observed that the 

duration for which the devices are ON, either decreases or remains the same except 

for fan. The duration for which fan is ON increases because as the duration of air-

conditioner reduces, to keep the comfort level in the room at optimum level, the fan 

remains ON for a longer time. Power and cost of energy were calculated based on 

collected data. It was observed that with smart gateway control, there was 

significant energy and cost saving. For example, energy and cost saving for living 

room was 1264 kWh and $227.5 respectively; energy and cost saving for master 

bedroom as well as children’s bedroom were 629.6 kWh and $113 respectively; 

In another study, Bozchalui, et. al. [10] have presented an optimization model for 

residential building. They address the issue that most of the electrical appliances are 

designed to perform only a particular function. The design of appliances do not take 

under consideration multiple objectives such as user-needs, comfort level, low 

energy consumption, low energy cost, etc. Hence smart controllers were used for the 

appliances to achieve energy optimization along with low energy cost. An 
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optimization model was developed for appliances along with smart controllers. 

Smart homes can be considered as energy hubs, where energy is stored, converted, 

consumed and also produced. This hub consists of a central controller which is 

connected to smaller controllers of individual appliances and the operation of the 

appliances can be controlled through the central controller. This can be understood 

better from Figure 1.1. 

 

Figure 1.1: Residential energy hub structure [10] (WAN stands for Wide Area 

Network) © [2012] IEEE 

The mathematical model of such an energy hub is affected by factors like customer 

behaviour patterns, time of use of the appliance, type of pricing, outside 

environmental conditions and carbon dioxide emissions. Based on these factors an 

optimization model was developed [10] as seen in equations (1.1) to (1.4). 
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 𝑚𝑖𝑛 𝐽 = 𝑚𝑖𝑛(𝑤1𝐽1 +  𝑤2𝐽2 + 𝑤3𝐽3 + 𝑤4𝐽4) 
 

(1.1) 

 𝑠. 𝑡. ∑ 𝑃𝑖𝑠𝑖(𝑡)

𝑖∈𝐴

 ≤  𝑃𝑚𝑎𝑥(𝑡),    ∀𝑡 ∈ 𝑇 

 

(1.2) 

 𝐷𝑒𝑣𝑖𝑐𝑒 𝑖 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠,   ∀𝑖 ∈ 𝐴 
 

(1.3) 

 𝐴 = {𝑎𝑐, 𝑒𝑠𝑑, 𝑑𝑟𝑦, 𝑑𝑤, 𝑓𝑟, ℎ𝑡, 𝑖𝑙, 𝑝𝑣, 𝑝𝑚𝑝, 𝑠𝑡𝑣, 𝑤𝑟} 
 

(1.4) 

where  𝐽1 = cost of energy 

 𝐽2= consumption of energy 

 𝐽3= cost of CO2 emissions 

 𝐽4= peak demand charges 

 𝑤1, 𝑤2, 𝑤3, 𝑤4 = weights on cost function terms for 𝐽1, 𝐽2, 𝐽3, 𝐽4 respectively. 

𝑖 = index of devices 

𝐴 = set of devices 

 𝑃𝑖  = rated power of device i 

 𝑠𝑖(𝑡) = state of device i at time t, binary (ON/OFF) 

 𝑃𝑚𝑎𝑥(𝑡) = allowed peak load of the energy hub at time t 

 Τ = time interval duration 

Equations (1.1) to (1.4)  illustrate the optimization framework for which appropriate 

values of the weights are chosen in the objective function 𝐽 depending on the 

prioritization of 𝐽1, 𝐽2, 𝐽3, 𝐽4. Operational constraints are defined for different 

appliances mentioned in the set A. These constraints include the operational time of 

devices, start-up and shut-down conditions, temperature limits for heat exchanger 

devices, minimum up time and down time, energy storage levels and illumination 
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levels in a certain zone. The objective function along with the constraints, forms a 

Mixed Integer Linear Programming (MILP) optimization problem which can be 

solved in linear optimization software packages.  

The optimization model was run for a house in Ontario, Canada. Several formulae 

were defined to calculate the values of the model parameters close to real life 

situations. On collecting data, and solving the optimization model, it was found that 

residential energy hub connected to a smart grid can provide upto 20% and 50% 

savings on energy cost and peak demand, respectively. The developed model takes 

into consideration the user comfort, CO2 emissions and integration of smart grids 

into the daily residential life.  

 

1.3  Modelling of Building-Smart Grid Interaction 

A mathematical model of a physical system is the representation of the behaviour of 

the system taking into consideration the effects of various parameters and factors. It 

helps in better understanding of the system behaviour patterns under different 

situations and aids in better control of parameters. A number of models for buildings 

in smart grids have been developed so far. Each one has a different logic with 

different kinds of inputs. But all the models more or less have the same objective i.e. 

to minimize the energy cost and consumption. The models can be categorized as 

described in subsequent sub-sections. 

1.3.1  Load variation and frequency of appliances’ usage 

All the appliances are not ON all the time. Some are switched ON/OFF very 

frequently, some are ON during the day/night only, some are on standby mode using 

lower power than the rated power, etc. Thus this variation in the frequency of use of 

appliances causes the load on the grid to vary.  
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Zhang, et. al. [11] developed an agent based model for office buildings. They 

categorized the appliances based on their frequency of use and then found the 

energy consumption by multiplying the time of use by their power rating. For 

simulation of the model, a case study was performed in an academic building in the 

School of Computer Science at University of Nottingham. The paper classified the 

consumers (agents) based on their behaviour as OutOfSchool, InCorridor, 

InOwnOffice and InOtherRooms. The agents were also divided in groups as per 

their time in the building like Early Birds, Timetable Compliers and Flexible 

Workers. In the simulation, the different agent behaviours were simulated. The 

appliances mainly under consideration were lighting system and computers. The 

power drawn by them in their different operational modes was measured using a 

power meter. Thus total energy consumption was calculated through simulation and 

using rated power values. Simulation had two parts – (1) appliances were turned 

ON/OFF automatically (2) appliances were switched ON/OFF by the agents. It was 

observed that if agents were made aware of energy conservation, the second 

simulation saved more power as the appliances were turned OFF immediately after 

use. Whereas in automation, the appliances turn OFF after approximately 20 

minutes after usage. But this result ignored the fact that the agents do not bear the 

cost of electricity so they tend to be careless.  

In another study, Shuma-Iwisi [12] took into account not only the ON-OFF modes 

of an appliance, but also the standby mode of that appliance. A standby mode is 

where the appliance is plugged into the socket, but is either waiting to be switched 

ON by a remote control or is performing some other functions than its normal 

function. Whenever an appliance is in the standby mode, it draws low power and 

that is called standby energy losses. In the case study conducted in 11 suburbs of 

greater Johannesburg, the standby energy losses were estimated using a bottom-up 

model. The region under case study was divided in clusters. For each cluster, 

saturation level was estimated for all appliances (i.e. number of houses in a specific 
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area having that particular appliance). Appliances with high saturation were 

considered for further study. The load variation included the time for which 

appliance is in standby mode, active mode and shut off mode. Thus total energy 

consumption and standby power losses were calculated by multiplying the power 

with time for each mode of operation. The model considered average load variation 

instead of dynamic load variation over a large area, which might lead to inaccurate 

estimation of energy consumption and standby power losses.   

Muthalib and Nwankpa [13] developed a circuit based model in which a relation is 

established between the building loads (power used) and building temperature 

maintained. This model is easy to incorporate into power grid as it is a circuit 

model. The model has three important parameters namely building nominal load, 

building nominal temperature and sensitivity of building nominal load with respect 

to building temperature. Building nominal load depends on demand response (DR). 

Greater the DR, larger is the nominal load. Building nominal temperature depends 

on the function of the building. The sensitivity of load, if negative, indicates power 

is required for cooling and as sensitivity increases and goes beyond zero, it indicates 

heating loads. Lower the sensitivity, larger is the thermal inertia, and more 

conducive it is for building DR technology. The circuit model was integrated into 

the electrical grid model using differential algebraic equations (DAE). This provided 

a modelling platform to capture the building-grid dynamics. If the model parameters 

are correctly estimated, the model is useful in finding the load variation limits and 

also informs the system operator to change settings of transformer in order to 

prevent voltage constraint being violated due to DR actions since voltage is a 

function of DAE (i.e. building-grid interaction).  

Morvaj, et. al. [14] developed an algorithm in order to increase or decrease the 

demand with respect to available power supply in the grid. They have explained 

briefly the concepts of smart city, smart grid, smart building, smart meter (for two-

way communication) and demand response programs. Demand response program is 
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a means of interaction between the consumer and supplier of electricity. Since the 

price of electricity depends on whether the demand is more or less than supply 

(price increases or decreases respectively), it is important to manage the demand of 

the building in order to reduce the cost of power for the consumer. A model for a 

building energy direct control was developed such that when the price of electricity 

changes due to supply-demand imbalance, the controllable loads in the building are 

automatically turned on/off. The model includes human behaviour. Since human 

behaviour is unpredictable, it is modelled using uniform distribution i.e. probability 

distribution with same probability in each time interval. The simulations using this 

model proved that the power consumption with direct control lead to more power 

saving with reduced cost compared to power consumption with only price signal 

value and no direct control. The model behaviour for power consumption with 

respect to the price signal value is as expected through different scenarios for 

supply-demand imbalance. 

1.3.2  Dynamic pricing 

Dynamic pricing is an important factor that needs to be considered while developing 

a mathematical optimization model for the building-grid interaction in order to 

reduce the cost of energy. 

Conejo, et. al. [15] demonstrated an optimization model with the objective of 

maximizing benefit to consumer provided that there is minimum energy use and 

also the load level should remain within maximum and minimum limits every hour. 

The first model developed in the paper assumed that for every hour (say t hour), the 

prices and energy use for the previous hour (t-1 hour) are known. This model helps 

to determine the energy use and load level for the ‘t’ hour. But since price for all 24 

hours is not a known quantity, they modified the model to make it more robust. The 

new model now receives the price for t-1 hour dynamically at the beginning of the 

hour. This makes the model more realistic. Simulations of the model were carried 

out to obtain energy use per hour. Thus knowing the load level at the beginning of 
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the hour, the consumer can plan his energy use in order to avoid the peaks in the 

energy consumption graph. The implementation of the model can be realized only if 

there is bi-directional communication device between supplier of energy and the 

consumer. 

Roozbehani, et. al. [16] described a model which can help stabilizing the market 

prices for electricity. The model has three participants namely, consumer, producer 

and independent system operator (ISO). According to the model, the consumer 

receives the market electricity prices at time, say t, generated by the ISO. Then the 

consumer adjusts his energy consumption according to the prices. This demand 

adjustment is calculated over an hour and is transmitted to the producer who adjusts 

his supply according to the demand. By the start of t+1 hour, new prices are 

generated and the process of adjusting demand, supply and prices goes on. This 

model was simulated using two algorithms. First was by generating prices every 

hour as described in the model, and second was communicating directly the 

Locational Marginal Prices (LMP) to the consumers. It was observed that by using 

the first algorithm, the variation in prices is smoother and it gives consumer some 

time to adjust the demand, whereas by LMP algorithm, there is a sudden change in 

prices giving almost no time for demand adjustment. Thus the pricing model 

developed gives a much more stabilized pricing than the LMP model.  

Halvgaard, et. al. [17] developed a linear state space model with predictive control 

by heat pump. The model uses different ways to shift the load on the grid to low 

price period. First method was to sense the frequency of the grid (demand>supply 

means frequency drops and demand<supply means frequency rises). According to 

the frequency of the grid, the heat pump will decide whether to start the compressor 

early or delay the operation of heating. Another way was to feed in the controller of 

heat pump with the dynamic variation in prices and accordingly schedule the 

compressor operation. But this control is not flexible to unforeseen changes in 

demand and supply. Third way was to use the pricing information and have the 
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utilities send signals of demand variation to the heat pump. The method used in [17] 

is to use the current and future prices to optimize energy consumption of building. 

The objective of the model was to predict energy consumption by the heat pump and 

minimize the cost of electricity used by heat pump in order to maintain a constant 

thermal comfort inside the building. The assumptions while developing the model 

are that the price of electricity is known at all times, no outdoor factors like wind 

and humidity (except ambient temperature and solar radiation) or human influences 

building temperature and temperature throughout the building is uniform. The 

model includes variables of building namely, room air temperature, floor 

temperature, water temperature in floor heating pipes, ambient temperature, ground 

temperature, heat pump compressor input power and solar radiation power. Taking 

these variables into account, it is easier to decide when to shift the building load to 

lower price periods. On carrying simulation of the model, the simulation results 

indicated that desired control of temperature was achieved by the developed model. 

A summary of modelling of building-smart grid interaction can be shown in Figure 

1.2. 
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Figure 1.2: Categorization of Models for building-smart grid dynamics 

 

 

1.4  Scope of Thesis 

The previous sections explained the importance of modelling and controlling 

building-grid energy which forms the basis of this thesis. Thus the objectives of this 

thesis are defined as:  

1) Developing a control oriented model for a campus building with focus on 

Heating Ventilation and Air Conditioning (HVAC) system. HVAC is the most 

controllable load in the building and also accounts for about 44% of energy use 

in buildings. 

2) Designing predictive control techniques for building energy saving 

Building-Smart 
Grid Interaction 

Load Variation/Frequency of use 
of appliances 

[Zhang, et. al. 2010], [Shuma-Iwisi 
2009], [Muthalib & Nwankpa 2013], 

[Morvaj, et. al. 2011] 

The demand can be shifted to 
low price period whenever 

possible. It does not consider the 
factors affecting load variation. 
Also it does not consider load 
variation limits, which when 

exceeded can cause drop/rise in 
voltage in the grid. 

Dynamic Pricing 

[Conejo, et. al. 2010], 
[Roozbehani, et. al. 2010], 
[Halvgaard, et. al. 2012] 

Model helps in adjusting 
demand with respect to the 
peak prices and supply i.e. 

stabilizing demand and supply. 
It needs bi-directional device. 
Sometimes, fixed prices are 

assumed. 
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3) Minimizing building energy cost in interaction with a smart grid 

4) Peak load constraining for building to grid integration 

 

1.5  Thesis Organization 

Chapter 1 explained the literature study that helped in determining the objectives of 

the thesis as well as act as a guideline for next chapters. Chapter 2 entitled 

‘Building-Energy Model’, deals with developing a resistance-capacitance model for 

the building (test bed is Lakeshore Centre, Houghton, MI), validating it and testing 

the sensitivity of the model with respect to various building parameters. Chapter 3 

entitled ‘Building Energy Optimization’ explains the optimization of the building 

energy model and minimizing the energy using methods of Model Predictive 

Control (MPC). Performance of MPC is tested by comparing its results with a 

common On/Off controller under different environmental conditions. Chapter 4 

entitled ‘Energy Cost Minimization and Energy Profile Peak Constraining’, uses 

MPC building model to minimize the cost of energy consumed. It uses dynamic 

pricing to optimize cost of energy. The MPC algorithm is further enhanced to 

constrain the peaks in the optimized energy profile so the load from the building lies 

within the maximum allowable load set by the power grid. Chapter 5 explains the 

conclusions of the thesis and provides recommendations for future work.  
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Chapter 2  

 

2 Building-Energy Model 

One of the objectives of this thesis is to minimize the energy consumption by the 

building. For that, developing the energy model for a building is one of the 

important steps. The energy model of a building can be one illustrating the 

electricity consumption by lighting or HVAC or the office equipment or all these 

things together. The decision as to the energy model should pertain to which energy 

consuming part of the building depends on what activities are dominant enough to 

consume maximum electricity and ease of control strategy application. 

HVAC is the largest single source of energy consumption in buildings and is also 

the most controllable load in buildings. This thesis centres on developing an HVAC 

energy model for buildings. This HVAC energy model is developed based on the 

knowledge of basics of thermodynamics and the approach studied in previous study 

[10] that was explained briefly in the previous chapter. 

This chapter includes basics of thermodynamics and energy transfer mechanisms in 

a building model, a brief introduction to resistance-capacitance model or the thermal 

circuit, the development of mathematical model for nodal thermal circuit of a room, 

experimental validation of model and finally sensitivity analysis of the model to 

determine key influential parameters in a building model. 

 

 

2.1 Heat Transfer Mechanisms in a Building Model 

To model the energy dynamics for the room, it is essential to be familiar with the 

mechanisms of heat transfer [27]. Heat can transfer through conduction, convection 

and radiation. The basic principle in all three mechanisms is that heat is always 

transferred from high temperature/energy area to low temperature/energy area.  
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Conduction constitutes exchange of particular energy whenever there is a 

temperature difference between two media. Heat transferred by conduction (�̇�𝑐𝑜𝑛𝑑) 

is given by Fourier’s law [27] shown in equation (2.1). 

 
�̇�𝑐𝑜𝑛𝑑 = −𝑘𝐴

𝑑𝑇

𝑑𝑥
 

(2.1) 

 

where, k is the thermal conductivity. A is the surface area between the interacting 

media while 
𝑑𝑇

𝑑𝑥
 is the temperature change with respect to change in thickness of 

layer (x). The negative sign indicates that heat is conducted in direction of 

decreasing temperature of a heat source.  

Convection occurs when a fluid flows adjacent to a solid surface. It can be natural or 

forced convection depending on if the flow is natural or forced. Convection is a 

combination of conduction and fluid motion. If a solid surface is hot, heat is first 

transferred to the adjacent layer of fluid by conduction and then due to the fluid 

flow, the hotter fluid is replaced by the cold fluid. This phenomenon is modelled by 

Newton’s law of cooling [27] shown in equation (2.2).   

 �̇�𝑐𝑜𝑛𝑣 = ℎ𝐴(𝑇1 − 𝑇2) (2.2) 

 

where �̇�𝑐𝑜𝑛𝑣 is the rate of heat transferred by convection; h is the convection 

coefficient; A is the surface area of the solid exposed to fluid flow; 𝑇1 is temperature 

of solid surface and 𝑇2 is temperature of the fluid. 

Radiation constitutes heat transfer through electromagnetic waves. It does not 

require any medium. It can take place in vacuum. Radiation can take place between 

any two media irrespective of their physical state. Surfaces emit, absorb and 

transmit radiation through electromagnetic waves and hence it is the fastest means 

for heat transfer. The rate of heat transfer by radiation can be given by Stefan-

Boltzmann law [27] shown in equation (2.3). 

 �̇�𝑒𝑚𝑖𝑡 =  𝜀𝜎𝐴𝑇𝑒𝑚𝑖𝑡
4  (2.3) 

 

where 𝜀 is the emissivity of the surface; 𝜎 is the Stefan-Boltzmann constant with a 

value of 5.67 × 10−8 𝑊

𝑚2 .𝐾4
 ; A is the surface area emitting radiation; 𝑇𝑒𝑚𝑖𝑡 is the 

temperature of the emitting surface. 
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Mechanisms of energy transfer consist of heat, work and mass flow. Work transfer 

is transfer of energy not caused by thermal gradient. Mass flow causes energy 

transfer due to the flow of mass in and out of a system. The generalized concept of 

the energy transfer is that the rate of change of energy of a system equals the 

difference between the rates of energy transfer in and out of the system. It is given 

by shown in equation (2.4). 

 
�̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 =

𝑑𝐸

𝑑𝑡
 

(2.4) 

 

The following thesis considers conduction and convection means of heat transfer for 

the building. Radiation is not considered in this thesis.  

Heat transfer in and out of the building takes place through conduction and 

convection. When the temperature indoor is not uniform, heat travels from higher 

temperature region to lower temperature region. This transfer of heat to attain 

uniformity in air temperature indoors is due to convection. Convection currents are 

set naturally from higher temperature zone to lower temperature zone or forced 

convection currents in presence of an external factor like fans or blowers. Any solid 

surface in the building e.g. the objects in the rooms or walls, has an air film adjacent 

to it. Consider heat transfers through walls. If the air is hotter than the wall surface, 

the air film receives heat from the outer air layers via convection. The heat from the 

air film is transferred to the wall surface via conduction. Heat transfer through wall 

takes place via conduction. If the wall surface is hotter than outer layers of air, heat 

from the wall surface travels to the air film via conduction. Heat travels from the air 

film to outer layers of air through convection. Thus temperature indoors is a result 

of heat transfer mainly through the walls into the room or out of the room and heat 

input into the room by the heat pump. The heat transfer through wall is shown 

schematically in Figure 2.1. 
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Figure 2.1: Schematic of Heat Transfer through a Wall 

 

 

2.2 Model Development 

The Lakeshore Centre of Michigan Technological University is selected as test bed 

in this thesis. This test bed has a heat pump for each of the rooms as seen in Figure 

2.2. The approach in this thesis is modelling one of the rooms pointed in Figure 2.2 

from Lakeshore Centre and then scaling up the model to represent a building.  
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Figure 2.2: Layout of first floor of Lakeshore Centre showing all rooms and all heat 

pumps on that floor. [See Appendix C for documentation of permission to republish 

this material] 

The energy model for the room is developed based on the heat transfer [27] taking 

place between the room and its walls and between the walls and its adjacent rooms 

or environment. The heat transfer mechanisms considered for the following model 

are conduction and convection. The model is a resistance-capacitance model (RC 

model) or a thermal circuit with an analogy to the resistance and capacitance of the 

electrical circuit [27].  

The thermal resistance for the heat transfer between the room and its walls and 

between the walls and outside environment is conductive and convective. The 

thermal capacitance in the model is the heat storage capacity of the room as well as 

the walls. 

The representation of a thermodynamic model in terms of electric circuit is called a 

thermal circuit. To explain thermal circuit better, refer equations (2.5), (2.6), (2.7) 

that give the analogy between thermal and electrical energy flow. 
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The voltage(𝑉1, 𝑉2), current(I) and resistance (R) in an electrical circuit are related 

as follows: 

 
𝐼 =

𝑉1 − 𝑉2

𝑅
 

(2.5) 

 

Rate of heat transferred by conduction and convection are given by, 

 
�̇�𝑐𝑜𝑛𝑑 =

𝑇1 − 𝑇2

𝑥𝑡ℎ

𝑘𝐴

 
(2.6) 

 

 
�̇�𝑐𝑜𝑛𝑣 =

𝑇1 − 𝑇2

1
ℎ𝐴

 
(2.7) 

 

The current flowing in the circuit is analogous to the heat flowing(�̇�𝑐𝑜𝑛𝑑, �̇�𝑐𝑜𝑛𝑣); 

the voltage difference is analogous to the temperature difference between which the 

heat flows. Thus by this analogy, the conductive and convective resistances for a 

thermal circuit can be given by 
𝑥𝑡ℎ

𝑘𝐴
 and 

1

ℎ𝐴
 , respectively. 

In order to calculate the resistances and the capacitances, nodes are decided. As seen 

in Figure 2.3, there are total nine nodes – four nodes at the centre of each wall 

width, one inside the room and four outside each wall of the room. Data of the 

nodes inside and outside the room is collected using temperature sensors which will 

be explained in section 2.3.  
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Figure 2.3: Schematic of the room model indicating the thermal nodes [19] [See 

Appendix C for documentation of permission to republish this material] 

The energy model has two parts, first being the heat transfer in and out of the room 

and the second part being the heat transfer in and out of the walls. The equation 

governing both parts of the model is  

 
�̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 = 𝐶

𝑑𝑇

𝑑𝑡
 

 

(2.8) 

�̇�𝑖𝑛 and �̇�𝑜𝑢𝑡 is the rate of heat in and out of the room/walls; C is the heat storage 

capacity of the room/walls and 
𝑑𝑇

𝑑𝑡
 is the rate of change in temperature of 

room/walls.  
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2.2.1 Heat Transfer in and out of room 

 

Based on the equation (2.8), the first part of the model for the room is given by 

equations (2.9) and (2.10). 

 

 �̇�𝑖𝑛 =  �̇� × 𝐶𝑝 × (𝑇𝑠 − 𝑇𝑟) 

 

(2.9) 

 
�̇�𝑜𝑢𝑡 =  

𝑇𝑟 − 𝑇𝑤1

𝑅𝑤1𝑖𝑛

+  
𝑇𝑟 − 𝑇𝑤2

𝑅𝑤2𝑖𝑛

+  
𝑇𝑟 − 𝑇𝑤3

𝑅𝑤3𝑖𝑛

+  
𝑇𝑟 − 𝑇𝑤4

𝑅𝑤4𝑖𝑛

+  
𝑇𝑟 − 𝑇𝑑4

𝑅𝑤𝑖𝑛
  

 

(2.10) 

where, �̇� = mass flow rate of air (kg/sec) supplied by the HVAC into the room 

 𝐶𝑝 = specific heat capacity of air (J/kg.K) 

 𝑇𝑠 = temperature (K) of the air supplied by HVAC to the room 

 𝑇𝑟 = temperature (K) of the room  

 𝑇𝑤𝑗   = temperature (K) of nodes in centre of walls (𝑤ℎ𝑒𝑟𝑒 𝑗 = 1 𝑡𝑜 4) 

 𝑇𝑑4 = temperature (K) of the environment outside the window 

 𝑅𝑤𝑗𝑖𝑛
 = thermal resistance of the inner part of walls (𝑤ℎ𝑒𝑟𝑒 𝑗 = 1 𝑡𝑜 4) 

 𝑅𝑤𝑖𝑛 = thermal resistance of the window 

Thus giving us the first part as: 

 [�̇� × 𝐶𝑝 × (𝑇𝑠 − 𝑇𝑟)] − [
𝑇𝑟−𝑇𝑤1

𝑅𝑤1𝑖𝑛

+  
𝑇𝑟−𝑇𝑤2

𝑅𝑤2𝑖𝑛

+  
𝑇𝑟−𝑇𝑤3

𝑅𝑤3𝑖𝑛

+  
𝑇𝑟−𝑇𝑤4

𝑅𝑤4𝑖𝑛

+  
𝑇𝑟−𝑇𝑑4

𝑅𝑤𝑖𝑛
 ] = 𝐶𝑟

𝑑𝑇𝑟

𝑑𝑡
  

 

(2.11) 

where, 𝐶𝑟 is the heat storage capacity of the room.  

 

 𝐶𝑟 = 𝜌𝑎 × 𝑉𝑜𝑙𝑟 × 𝐶𝑝  

 

(2.12) 

where, 𝜌𝑎 = density of air (
𝑘𝑔

𝑚3) 

 𝑉𝑜𝑙𝑟 = volume of room (𝑚3) 
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2.2.2 Heat Transfer in and out of walls 

 

The governing energy equation for the walls yields, 

 
�̇�𝑖𝑛 =

𝑇𝑟 − 𝑇𝑤𝑗

𝑅𝑤𝑗𝑖𝑛

  ;   �̇�𝑜𝑢𝑡 =
𝑇𝑤𝑗 − 𝑇𝑑𝑗

𝑅𝑤𝑗𝑜𝑢𝑡

 ;   𝑤ℎ𝑒𝑟𝑒 𝑗 = 1 𝑡𝑜 4 

 

(2.13) 

where, 𝑅𝑤𝑗𝑜𝑢𝑡
 is the thermal resistance of the outer part of the walls and 𝑇𝑑𝑗 is the 

outside temperature for each wall. 

Thus the second part of the model is obtained as seen in equation (2.14). 

 
[
𝑇𝑟 − 𝑇𝑤𝑗

𝑅𝑤𝑗𝑖𝑛

] − [
𝑇𝑤𝑗 − 𝑇𝑑𝑗

𝑅𝑤𝑗𝑜𝑢𝑡

] =  𝐶𝑤𝑗

𝑑𝑇𝑤𝑗

𝑑𝑡
 ;   𝑤ℎ𝑒𝑟𝑒 𝑗 = 1 𝑡𝑜 4 

 

(2.14) 

where, 𝐶𝑤𝑗 is the heat storage capacity of the walls (𝑤ℎ𝑒𝑟𝑒 𝑗 = 1 𝑡𝑜 4) and is 

calculated as  

 𝐶𝑤𝑗 = 𝐶𝑤 × 𝑅𝑗 × 𝐴𝑤𝑗 × 𝐿𝑗;    𝑤ℎ𝑒𝑟𝑒 𝑗 = 1 𝑡𝑜 4 

 

(2.15) 

𝐶𝑤 is the specific heat (𝐽/𝑘𝑔. 𝐾) of the walls; 𝑅𝑗 is the density of wall 𝑗; 𝐴𝑤𝑗 is 

surface area (𝑚2) of wall 𝑗 and  𝐿𝑗 is the width (𝑚) of wall 𝑗. 

𝑅𝑤𝑗𝑖𝑛
, 𝑅𝑤𝑗𝑜𝑢𝑡

 and 𝑅𝑤𝑖𝑛 are the thermal resistances given by: 

 
𝑅𝑤𝑗𝑖𝑛

=
1

ℎ𝑖𝑛 × 𝐴𝑤𝑗
+

𝐿𝑗/2

𝑘𝑗 × 𝐴𝑤𝑗
   

 

 

(2.16) 

 
𝑅𝑤𝑗𝑜𝑢𝑡

=
1

ℎ𝑜𝑢𝑡 × 𝐴𝑤𝑗
+

𝐿𝑗/2

𝑘𝑗 × 𝐴𝑤𝑗
 

 

 

(2.17) 

 
𝑅𝑤𝑖𝑛 =

1

ℎ𝑖𝑛 × 𝐴𝑤𝑗
+

𝑇ℎ𝑤

𝑘 × 𝐴𝑤𝑗
+

1

ℎ𝑜𝑢𝑡 × 𝐴𝑤𝑗
 

 

(2.18) 
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where ℎ𝑖𝑛 = convection coefficient of the inner part of walls (
𝑊

𝑚2.𝐾
) 

 ℎ𝑜𝑢𝑡 = convection coefficient of the inner part of walls (
𝑊

𝑚2.𝐾
) 

 𝐴𝑤𝑗 = surface area of walls (𝑚2) 

 𝑘𝑗 = conduction coefficient of walls (
𝑊

𝑚.𝐾
) 

 𝐿𝑗 = width of walls (𝑚) (𝑤ℎ𝑒𝑟𝑒 𝑗 = 1 𝑡𝑜 4). 

 𝑇ℎ𝑤 = width of window glass (𝑚) 

 

Overall the energy model consists of five energy equations. The values of the 

parameters were either known or chosen based on the environmental conditions 

and/or building material properties. The values of the parameters are listed in the 

Table 2.1. 

Table 2.1: Values of the parameters used in the Energy Model for the building 

Parameter Description Value 

𝐶𝑝 Specific heat capacity of air 1005 𝐽/𝑘𝑔. 𝐾 

𝜌𝑎 Density of air 1.205 
𝑘𝑔

𝑚3 

𝐶𝑂𝑃 
Coefficient of performance of 

heat pump 

3.2 

𝐴𝑤𝑖𝑛 Area of window 3 𝑚2 

𝑇ℎ𝑤 Thickness of window glass 0.01 𝑚 

𝐾𝑤 Conductivity of window glass 0.96 𝑊/𝑚. 𝐾 

𝑅𝑖 Density of inner three walls 240 
𝑘𝑔

𝑚3 

𝑅𝑜 Density of outside wall 2000 
𝑘𝑔

𝑚3 

𝐾𝑖 = 𝑘𝑗  (𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2,3)  
Conductivity of inner three 

walls 
0.048 𝑊/𝑚. 𝐾 

𝐾𝑜= 𝑘𝑗  (𝑤ℎ𝑒𝑟𝑒 𝑗 = 4) Conductivity of outside wall 0.72 𝑊/𝑚. 𝐾 

ℎ𝑖𝑛 
Convection coefficient for 

inner three walls 
5 𝑊/𝑚2. 𝐾 

ℎ𝑜 
Convection coefficient for 

outside wall 
20 𝑊/𝑚2. 𝐾 

𝐶𝑤 Heat storage capacity of walls 800 𝐽/𝑘𝑔. 𝐾 
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𝐴𝑤𝑗  (𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,3) Surface area of inner walls 27.54 𝑚2 

𝐴𝑤𝑗  (𝑤ℎ𝑒𝑟𝑒 𝑗 = 2) Surface area of inner walls 22.95 𝑚2 

𝐴𝑤𝑗  (𝑤ℎ𝑒𝑟𝑒 𝑗 = 4) =

𝐴𝑤2 − 𝐴𝑤𝑖𝑛  
Surface area of outside wall 

19.95 𝑚2 

𝐿𝑖 = 𝐿𝑗  (𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2,3)  Thickness of inner three walls 0.15 𝑚 

𝐿𝑜 = 𝐿𝑗  (𝑤ℎ𝑒𝑟𝑒 𝑗 = 4) Thickness of outside wall 0.70 𝑚 

�̇� 
Mass flow rate of air into the 

room from the heat pump fan 
0.52 

𝑘𝑔

𝑠𝑒𝑐
 

 

 

 

 

2.3 Experimental Setup 

 

The test bed under study was the Lakeshore Centre at Michigan Technological 

University (Figure 2.4). The energy consumption by different devices of the 

building [26] is shown in Figure 2.5 that was determined using carrier HAP 

software. 

 

 

Figure 2.4: Test Bed – Lakeshore Centre, Michigan Technological University [See 

Appendix C for documentation of permission to republish this material] 
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Figure 2.5: Electrical Energy usage for Lakeshore Centre [26] [See Appendix C for 

documentation of permission to republish this material] 

As seen from Figure 2.5, the energy consumption by the HVAC is 44% in winter 

and 23% in summer. Hence controlling the energy usage by HVAC is important. 

Since HVAC consumes 44% power in winter, the objective of this thesis is to 

optimize the energy consumption pertaining to heat pump only. The room used for 

modelling and data collection is the one pointed with an arrow in Figure 2.2. 

 

As seen in Figure 2.6, three walls of the room have two adjacent rooms and one 

adjacent corridor while the wall with a window faces the outside environment. The 

wall with a window is almost five times thicker than the rest of the three walls while 

the window has a double layered glass. The Building Management System (BMS) 

adjusts room temperature using an ON/OFF HVAC controller along with a 

temperature sensor (Uni-curve Type II) on one of the walls and records data using 

temperature data logger installed on another wall of the room. The accuracies of the 

sensor and the logger are ±0.2°C and ±0.8°C respectively. The measured room 

temperature is the average value obtained from temperature sensor and the sensor 

from the data logger. Thus the indoor as well as outdoor temperature data is 

obtained through BMS. The data which is used for validation (Section 2.4) of the 
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model of the room is sampled every minute. The positions of the temperature sensor 

and data logger are as shown in Figure 2.6 

 
Figure 2.6: Schematic of room indicating position of temperature sensor and data 

logger 

 

The room under consideration is supplied heat through a Ground Source Heat Pump. 

The make is ClimateMaster. It is a horizontal heat pump, with voltage 220V and 

flow rate 906 cfm. Lakeshore Centre has individual heat pumps for each of the 

rooms or zones in the building. The set point of each heat pump can be set 

individually based on the purpose that the room or zone serves. Thus, the room 

under consideration is subjected to different set points of adjacent rooms and 

corridor as well as extreme conditions of outside environment in winter.  
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2.4 Validation of the Model 

 

The model has five differential equations and thus can be turned into a state space 

model. The states of the model are – room temperature and the four wall 

temperatures. The input for the model (matrix 𝑢 in equation (2.22)) is the 

temperature of the air supplied by the heat pump. The disturbances to the model 

(matrix 𝑑 in equation (2.23)) are the four temperatures outside each wall. These 

disturbances include the temperature variation in the two adjacent rooms, in the 

adjacent corridor and the outside environmental temperature. The model can be 

represented as: 

 �̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐹𝑑 
 

(2.19) 

 𝑦 = 𝐶𝑥 
 

(2.20) 

where, 

 𝑥 = [𝑇𝑟  , 𝑇𝑤1 , 𝑇𝑤2 , 𝑇𝑤3 , 𝑇𝑤4] 
 

(2.21) 

 𝑢 =  𝑇𝑠 
 

(2.22) 

 𝑑 = [𝑇𝑑1 , 𝑇𝑑2 ,  𝑇𝑑3 ,  𝑇𝑑4] 
 

(2.23) 

 𝑦 =  𝑇𝑟 
 

(2.24) 

The parameters in the model are thermal properties of the building material, 

dimensions of the room and air properties. The matrices A, B, F and C are shown in 

Appendix A. The simulation result obtained along with experimental measurements 

is shown in Figure 2.7. 
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Figure 2.7: (a) Simulation Plot of Energy Model for the room showing simulated 

room temperature and measured room temperature both (b) Plot shows the input 

supply temperature and the dominant disturbance to the model which is the outside 

environmental temperature (c) Plot shows the error between the simulated and 

measured room temperatures. The error is less than 1 °C. 

 

As can be seen from the Figure 2.7, the simulated and the measured room 

temperatures nearly coincide. There is a small deviation (less than 1°C) of the 

simulated room temperature from the measured room temperature since the 

radiation and internal heat generation effects are not considered into the model. 

Thus the energy model is validated and proves to be a very good mathematical 

representation of the room. 
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2.5 Sensitivity Analysis 

 

Now that the model has been validated, it is important to know how variation of 

different parameters affects the output of the model. Such analysis is called 

sensitivity analysis of the model. This analysis will be useful in better selection of 

building materials, size of windows, size and type of heat pumps, etc. to implement 

better climate control strategies in buildings. 

Sensitivity function for the room temperature is the ratio of unit change in room 

temperature to unit change in a parameter. Sensitivity has no units since its 

numerator and denominator are ratios of same quantities respectively. The base 

values of the parameters based on which the change is calculated are the values 

given in Table 2.1. The sensitivity function is given by equation (2.25). 

 
%𝑆𝑓 =

∆𝑇𝑟

𝑇𝑟,𝑏𝑎𝑠𝑒
×

𝑋𝑏𝑎𝑠𝑒

∆𝑋𝑏𝑎𝑠𝑒
× 100 

 

(2.25) 

where  %𝑆𝑓 = Percent sensitivity function 

 𝑇𝑟,𝑏𝑎𝑠𝑒 = base room temperature value 

 𝑋𝑏𝑎𝑠𝑒 = base parameter value 

 ∆𝑋𝑏𝑎𝑠𝑒 = change in base parameter value 

 ∆𝑇𝑟  = change in base room temperature value 

  

Sensitivity analysis is performed by changing one parameter at a time while keeping 

the remaining parameters constant. The range within which parameters are varied is 

specific to the properties of that parameter, the existing conditions of temperature, 

dimensions of walls, etc.  

The change in base values (∆𝑋𝑏𝑎𝑠𝑒) of parameters is ±10% of the base value 

(𝑋𝑏𝑎𝑠𝑒). 
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When all the parameter values are increased by 10%, their effect on the room 

temperature is as shown in Figure 2.8. 

 

Figure 2.8: Percent sensitivity of room temperature with respect to twelve 

parameters 

The variation of sensitivity of room temperature with respect to the parameters over 

24 hours cannot be seen distinctly in Figure 2.8.  In order to understand the effect of 

each parameter on room temperature, six time instants were chosen. For each time 

instant, a bar graph is plotted, each bar representing the percent sensitivity of room 

temperature with respect to each parameter at the same time instant with other 

parameters being unchanged. Figure 2.9 and Figure 2.10 show the bar graphs. 

For each time instant, the bar graph has sensitivities for each parameters plotted on a 

same scale. Since the scale is same for all parameters, one can see the parameters 

which dominantly affect the room temperature in each time instant. The purpose of 

bar graphs is thus only to determine the dominant parameters.  
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Figure 2.9: (a) Sensitivities at the 4
th

 hour after midnight (b) Sensitivities at the 6
th

 

hour after midnight (c) Sensitivities at the 10
th

 hour after midnight 

As can be seen in the bar graphs in Figure 2.9 and Figure 2.10, sensitivities are 

either positive or negative. Positive sensitivity indicates that increase/decrease in the 

value of parameter results in increase/decrease in room temperature, respectively. 

Negative sensitivity indicates that the change in parameter value results in change in 

room temperature in opposite direction. 
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Figure 2.10: (d) Sensitivities at the 14
th

 hour after midnight (e) Sensitivities at the 

18
th

 hour after midnight (f) Sensitivities at the 23
rd

 hour after midnight 

 

The effect of each parameter on room temperature is summarized in Table 2.2. 
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Table 2.2: Effect of different parameters and variables on the room temperature 

Parameter Description 

Effect on room 

temperature (𝑇𝑟) by 

increasing the parameter 

value by 10% 

𝐴𝑤𝑖𝑛 Area of window 𝑇𝑟 decreases 

𝑇ℎ𝑤 Thickness of window glass 𝑇𝑟 increases 

𝐾𝑤 Conductivity of window glass Almost zero sensitivity 

𝑅𝑖 Density of inner 3 walls Almost zero sensitivity 

𝑅𝑜 Density of outside wall Almost zero sensitivity 

𝐾𝑖 Conductivity of inner 3 walls 𝑇𝑟 decreases 

𝐾𝑜 Conductivity of outside wall 𝑇𝑟 decreases 

ℎ𝑖 
Convection coefficient for 

inner 3 walls 
𝑇𝑟 decreases 

ℎ𝑜 
Convection coefficient for 

outside wall 
𝑇𝑟 decreases 

𝐶𝑤 Heat storage capacity of walls Almost zero sensitivity 

𝐿𝑖 Thickness of inner walls 𝑇𝑟 increases 

𝐿𝑜 Thickness of outside wall 𝑇𝑟 increases 

 

On carefully observing the bar graphs, we can conclude that significantly dominant 

parameters are area of window (𝐴𝑤𝑖𝑛), conductivity of outside wall (𝐾𝑜), convection 

coefficient for inner walls (ℎ𝑖) and thickness of the outside wall (𝐿𝑜). Figure 2.11 

shows comparison of sensitivity of room temperature with respect to dominant 

parameters 24 hours. 
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Figure 2.11: Sensitivity of room temperature with respect to dominant parameters 

Effect of the dominant parameters on room temperature is such that the slope of the 

sensitivities is steep at the beginning and with time the slope of sensitivities tends to 

zero. Sensitivity of room temperature with respect to 𝐿𝑜 is positive whereas the 

sensitivity of room temperature with respect to 𝐴𝑤𝑖𝑛, 𝐾𝑜 and ℎ𝑖 is negative. The four 

parameters 𝐴𝑤𝑖𝑛, 𝐾𝑜, ℎ𝑖, 𝐿𝑜 are some of the parameters that define the resistance 

coefficient in heat transfer process. The graphs for sensitivities with respect to 𝐿𝑜 

and 𝐾𝑜 seem to be reflection of each other about the X axis. Please note the 

sensitivity results can depend on the base point operating condition. The sensitivity 

results reported in this section are valid around the base operating point in this 

study.  

This chapter provided an experimentally validated building energy model and 

analysed the effect of each parameter and variable on the room temperature thus 

enabling us to carry out further operations on the model. The next chapter uses this 

energy model for optimizing the power consumed by the heat pump by converting 

this continuous model into a discrete model. 
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Chapter 3  
 

3 Building-Energy Optimization 
 

3.1  Background 

Optimization is a process of determining the best possible result/outcome for a 

problem, based on the constraints or restrictions on the flexibility of certain 

parameters that constitute the problem. The problem could be a situation in our day 

to day lives or it could be situation that can be represented as a mathematical 

equation. People without realizing use optimization in their day to day lives. For 

example, a student needs to pack his bag for school. For him the aim could be 

carrying minimum weight on his shoulders. So the student will take only those 

books which will be needed for that day’s classes, he might even leave out a couple 

reference books. Thus the student makes optimum decision based on the restrictions 

on the weight and the number of classes that day.  

Mathematically, optimization has made great advances and has been extremely 

helpful in different fields like management, manufacturing processes, engineering, 

research and development etc. Optimization helps in finding the best 

strategy/control/design which further helps in increasing efficiency, productive time, 

profit, etc.  

Many great scientists like Newton, Leibnitz, Lagrange, Cauchy, Bernoulli, Euler 

etc. made contributions to the optimization field. They introduced many theoretical 

methods to solve different types of problems e.g. Lagrange Duality theory, 

Newton’s method, etc. But a speedy progress was made only after the introduction 

of computer methods to solve optimization problems. The use of computers helps 

solve the most complicated and time consuming optimization problems, thus saving 

human time and energy. Softwares like MATLAB, GAMS, etc. have tools which 

already contain specific algorithms for most ‘widely solved’ type of problems.  

The aim for this chapter is to minimize the energy consumed by the building. The 

algorithm used to achieve it will be the optimal control strategy which when 

implemented in a building, will result in minimal consumption of energy. The 

following chapter explains the structure of an optimization problem, the 
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optimization problem formulation for our model, the simulation and finally the 

optimum results. The model and the algorithm developed for optimization is then 

tested for different environmental conditions. A comparison between the optimal 

controller and the traditional On/Off controller is studied to determine a better 

controller suitable as per the usage of the existing building test bed at Michigan 

Technological University. 

 

3.2  Structure of Optimization Problem 

Every optimization problem consists of an objective function and some constraints. 

An objective function is an equation which when solved using the optimum values, 

results in achieving the aim of the problem. The structure of a typical optimization 

[18] problem is represented by equations (3.1) to (3.4). 

 min 𝑓(𝑥) 
 

(3.1) 

 𝑠. 𝑡.  𝑔𝑖(𝑥)  ≤ 0      𝑓𝑜𝑟 𝑖 = 1, … , 𝑚 
 

(3.2) 

 ℎ𝑗(𝑥)  = 0      𝑓𝑜𝑟 𝑗 = 1, … , 𝑛 (3.3) 

 

 𝑥 ≤ 0 𝑜𝑟 𝑥 ≥ 0 (3.4) 

   

   

The problem is read as minimize the function 𝑓(𝑥) subject to the inequality 

constraints 𝑔𝑖(𝑥), the equality constraints ℎ𝑖(𝑥) and the bounds for the variable 𝑥. 

The equality and inequality constraints and the bounds on variable 𝑥, are called 

design or operational constraints. The constraints come into the picture due to the 

practical limits on spatial and operational parameters of a design. The variable 𝑥 is 

called as the design or decision variable. It is the value of this variable 𝑥, that is 

selected based on the design/operational constraints to minimize the value of the 

objective function 𝑓(𝑥). The objective function 𝑓(𝑥) is also called the cost function. 

One can maximize or minimize 𝑓(𝑥). In order to maximize, a negative of the cost 

function is considered. Thus {- 𝑓(𝑥)} is minimized resulting in a desired maximum 

value. The cost function can have a constant optimum value with respect to time or 

the optimum value can change over time. If the optimum value of the cost function 

is constant with respect to time it is called a static cost function. If the optimum 

value of the cost function keeps changing with time, it is called a dynamic cost 

function. 
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An optimization problem can also be represented graphically. The inequality 

constraints and bounds define a feasible surface, called the constraint surface. Any 

point on the constraint surface is a feasible solution and any point outside the 

constraint surface is infeasible solution. The constraints are sometimes redundant 

constraints. For example, suppose there are two constraints  5𝑥 + 3 ≤ 23  and 

𝑥 ≤ 6. Since the first constraint is effectively 𝑥 ≤ 4, the constraint 𝑥 ≤ 6 is 

redundant. An optimization problem does not always have to have constraints. Such 

problems are called unconstrained optimization problems.  

Depending on the nature of a problem, the numbers in the equations can be integers 

or real, deterministic or random. Likewise, the equations can also be linear or non-

linear, quadratic or polynomial.  

The structure of the optimization problem given at the start of this section is for only 

one variable 𝑥. If there are multiple decision variables, the problem has the same 

format with more constraints for additional decision variables. A generalized format 

for an optimization problem with single or multiple decision variables [18] is 

represented by equations (3.5) to (3.14). 

 min 𝑓(𝑥, 𝑦, 𝑧) 
 

(3.5) 

 𝑠. 𝑡.  𝑔𝑖1
(𝑥)  ≤ 0      𝑓𝑜𝑟 𝑖1 = 1, … , 𝑚1 (3.6) 

   

 𝑔𝑖2
(𝑦)  ≤ 0      𝑓𝑜𝑟 𝑖2 = 1, … , 𝑚2 

 

(3.7) 

 𝑔𝑖3
(𝑧)  ≤ 0      𝑓𝑜𝑟 𝑖3 = 1, … , 𝑚3 

 

(3.8) 

 ℎ𝑗1
(𝑥)  = 0      𝑓𝑜𝑟 𝑗1 = 1, … , 𝑛1 

 

(3.9) 

 ℎ𝑗2
(𝑦)  = 0      𝑓𝑜𝑟 𝑗2 = 1, … , 𝑛2 

 

(3.10) 

 ℎ𝑗3
(𝑧)  = 0      𝑓𝑜𝑟 𝑗3 = 1, … , 𝑛3 

 

(3.11) 

 𝑥 ≤ 0 𝑜𝑟 𝑥 ≥ 0 
 

(3.12) 

 𝑦 ≤ 0 𝑜𝑟 𝑦 ≥ 0 
 

(3.13) 

 𝑧 ≤ 0 𝑜𝑟 𝑧 ≥ 0 (3.14) 

Classification of an optimization problem is based on constraints (Constrained, 

Unconstrained), based on type of equations (Linear/Non-linear, Quadratic, 
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Polynomial) and based on nature of decision variables (Integer/Real, 

Deterministic/Stochastic). Depending on the nature of the cost function, the 

constraints and the decision variables, different algorithms/methods are used to 

obtain the optimal solution. Some of the commonly used optimization methods 

include Augmented Lagrangian method ([18],[20]), Branch and Bound[18], 

Dynamic Programming ([18],[20]), Travelling Salesman algorithm[18], Newton’s 

method[18], Nonlinear Programming ([18],[20]), Greedy Algorithm[18]. This thesis 

uses Model Predictive Control [20] to minimize energy usage by the building. This 

optimization based control technique is explained in the subsequent section. 

 

3.3  Model Predictive Control using Receding Horizon Control 

Method 

The section 3.2 explains the basics of optimization. The traditional methods of 

optimization are methods in which all the actual values of necessary data are known 

all at once and the optimization is carried out offline. In some cases, the actual 

values of data cannot be known beforehand; they need to be predicted one or few at 

a time and optimization needs to be performed in real time (online optimization). 

Such optimization wherein the optimal solution is evaluated based on some 

predicted values of necessary data and a mathematical optimization model (Section 

3.2), is called Model Predictive Control (MPC). Sometimes input to the model is 

predicted and optimal output is calculated while in some other cases, disturbances in 

the model are predicted and optimal inputs along with optimal outputs are evaluated. 

The period for which MPC is implemented is a called a control horizon. The period 

for which data is predicted at a time is called the prediction horizon. A control 

horizon comprises of one or many prediction horizons. The difference between 

traditional (offline) optimization and MPC (online optimization) can be understood 

from the schematics in Figure 3.1 and Figure 3.2. 
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Figure 3.1: Schematic of Traditional Optimization Method 
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Constraints 

Cost Function and 
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Figure 3.2: Schematic of MPC (Receding horizon control method) 

The prediction horizon as per the algorithm in the schematic of MPC shifts by one 

unit after every cycle of optimization. Thus such an algorithm is called receding 

horizon control method. To understand receding horizon control method, let us 

assume our control horizon to be three units of time and sample time for data 

predicted/optimized is one unit. Then the control horizon will consist of three 

prediction horizons. Inputs are predicted for the first prediction horizon based on the 

known data from the previous one unit of time (it could be an hour or a day, etc.). 

Optimization is carried out using these predicted values and the optimal solution is 

implemented. After implementing the solution, the prediction horizon shifts by one 

unit of time. The inputs are again predicted based on the data collected during the 

previous prediction horizon. Optimization is carried out; the optimal solution is 

implemented and data is gathered to predict inputs for the next prediction horizon. 

This kind of online optimization helps in gaining more efficient control over certain 

activities. For example, as explained in Chapter 1 section 1.3.2, receding horizon 

control method is used to minimize the cost of electricity. Price of electricity is 

predicted based on the previous prediction horizon data for load and frequency. The 
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predicted price is used as input to determine the amount of electricity to be used in 

the upcoming prediction horizon. If the predicted price is high, then low priority 

devices are turned off and are scheduled to run when the price drops. Thus the 

receding horizon control helps reduce the cost of electricity in real time.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Schematic of receding horizon control method using control horizon and 

prediction horizon 

The following chapter uses MPC with receding horizon control to minimize the 

energy used by the room under consideration. 

 

 

3.4  Optimization Problem Formulation 

In Chapter 2, an energy model was developed for a room in the Lakeshore Centre. 

To formulate an optimization problem for the room, we first formulate the cost 

function. Our aim is to minimize the energy/electricity consumption by the room in 

one day. Thus the equation for the cost function must be an equation which 
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calculates the electricity consumption by the room. The energy model in Chapter 2 

is based on the energy transfer equation that is stated in equation (2.8) again. 

 
�̇�𝑖𝑛 −  �̇�𝑜𝑢𝑡 = 𝐶

𝑑𝑇

𝑑𝑡
 

(3.15) 

 

For a heat pump, electricity utilized is given by equation (2.22). 

 𝑊 ̇ = �̇�𝑖𝑛/𝐶𝑂𝑃 (3.16) 

   

where  �̇� = electricity power utilized by the heat pump, 

 �̇�𝑖𝑛 = heat flow rate supplied by the heat pump to the room, 

 𝐶𝑂𝑃  = coefficient of performance of the heat pump. 

Heat supplied to the room by the heat pump is given by equation (2.23). 

 �̇�𝑖𝑛 =  �̇� × 𝐶𝑝 × (𝑇𝑠 − 𝑇𝑟) 

 

(3.17) 

Thus, for a 24 hour optimization problem, our cost function is given as: 

 min ∑ �̇�𝑘

𝑘∈𝑁

 

 

(3.18) 

 
𝑤ℎ𝑒𝑟𝑒 �̇�𝑘 =

[�̇� × 𝐶𝑝 × (|𝑇𝑠𝑘
− 𝑇𝑟𝑘

|)]

𝐶𝑂𝑃
 

 

𝑎𝑛𝑑 𝑁 𝑖𝑠 𝑎 24 ℎ𝑜𝑢𝑟 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 
 

(3.19) 

The COP for the heat pump under consideration is 3.2. The mass flow rate of air, �̇� 

is 0.52 kg/sec.  

The inequality constraints that are considered for the optimization of energy are the 

constraints for room temperature (𝑇𝑟) and supply temperature (𝑇𝑠). The bounds on 

the room temperature are not constant throughout the 24 hours since the room is not 

occupied during the night time. According to ASHRAE standard [21], the thermal 

comfort zone for a typical winter day is between 20°C to 23.5°C. This comfort zone 

is based on factors given in Table 3.1. 
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Table 3.1: Factors determining the comfort zone for the room [21]  

Relative humidity 60% 

Typical winter clothing 0.8-1.2 clo 

Activity level 1.2 met 

Air speed 0.05-0.25 m/sec. 

 

Since the actual set point in the Lakeshore room is 21°C, during the day, the 

operating temperature range considered for optimization is 20°C to 22°C. The room 

is usually occupied from morning 8 o’clock till evening 6 o’clock. The heat pump 

takes an hour to heat up the room to the set point, so the heat pump is started at 5 

o’clock in the morning. This allows sufficient time for the room to get heated and 

then for the room temperature to stabilize. For optimization purposes, the operating 

temperature range is kept different for the day and the night. Since the ASHRAE 

standards do not specify a thermal zone when a room is not occupied, the operating 

temperature range during occupied hours is relaxed by 2°C on both ends for the 

unoccupied hours. Thus the room temperature bounds are as given in Table 3.2. 

Table 3.2: Operating bounds on room temperature 

Time of the day Operating temperature range 

7 a.m. – 8 p.m. 20°C - 22°C 

9 p.m. 19°C - 23°C 

10 p.m. – 5 a.m. 18°C - 24°C 

6 a.m. 19°C - 23°C 

 

The bounds for room temperature can be seen as in Figure 3.4. 
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Figure 3.4: Operating limits for room temperature 

The supply temperature’s upper limit is 32°C based on the model of the heat pump 

that is used for the room. Supply temperature is supposed to be either equal to or 

greater than the room temperature for effective heating. Thus for optimization sake, 

for every iteration, the lower limit on supply temperature is taken to be the value of 

room temperature obtained in previous iteration.  

The energy model of the room developed in the Chapter 2 is a continuous model. 

Since receding horizon control method is used for optimization, the continuous 

energy model is converted to a discrete model. The equations of this discrete model 

act as the equality constraints for optimization problem. The equations are in the 

form of state space equation similar to equation (3.20). 
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 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐹𝑑𝑘 
 

(3.20) 

where, 𝑥𝑘+1 = states of the model being predicted over one unit time of  prediction 

  horizon 

 𝑢𝑘 = input to the model (𝑇𝑠𝑘
) [which is also predicted in our optimization] 

 𝑑𝑘 = predicted disturbances 

The states of the model 𝑥 are the room and the wall temperatures at the nodes 

([𝑇𝑟𝑘
, 𝑇𝑤1𝑘

, 𝑇𝑤2𝑘
, 𝑇𝑤3𝑘

, 𝑇𝑤4𝑘
] at instant k). The input to the model is the supply 

temperature (𝑇𝑠𝑘
) which is also predicted. The predicted variables for the MPC are 

taken as the four temperatures outside the four walls of the room (𝑇𝑑𝑗𝑘
; j= 1 to 4 at 

time instant k). The operating conditions for these predicted variables are taken to 

be the same as those taken for validation of continuous model in Chapter 2. Room 

temperature bounds are relaxed by a small value ‘𝜀’ called the slack variable giving 

more flexibilty to the algorithm. 

Thus the optimization problem can be stated as: 

 min ∑ �̇�𝑘

𝑘∈𝑁

 

 

(3.21) 

 
𝑤ℎ𝑒𝑟𝑒 �̇�𝑘 =

[�̇� × 𝐶𝑝 × (|𝑇𝑠𝑘
− 𝑇𝑟𝑘

|)]

𝐶𝑂𝑃
 

 

𝑎𝑛𝑑 𝑁 𝑖𝑠 𝑎 24 ℎ𝑜𝑢𝑟 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 
 

(3.22) 

 𝑠. 𝑡.       𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐹𝑑𝑘  
 

(3.23) 

 

 𝑇𝑟𝑘
≤ 𝑢𝑘 ≤ 32°𝐶 

 

(3.24) 

 𝑇𝑟𝑙𝑏
𝑘 − 𝜀𝑙𝑏𝑘

≤ 𝑇𝑟𝑘
≤ 𝑇𝑟𝑢𝑏

𝑘 + 𝜀𝑢𝑏𝑘
 

 

(3.25) 

  𝜀𝑙𝑏𝑘
≥ 0; 𝜀𝑢𝑏𝑘

≥ 0 

 

(3.26) 

where 𝑇𝑟𝑙𝑏
𝑘  and  𝑇𝑟𝑢𝑏

𝑘  are lower and upper bounds for room temperature, respectively 

(Table 3.2); 𝑘 = 0 𝑡𝑜 𝑁 − 1;  𝜀𝑙𝑏 𝑎𝑛𝑑 𝜀𝑢𝑏 are slack variables for lower and upper 

bounds for room temperature, respectively. 

Thus we have an optimization model for the room.  
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3.5  Optimization Results 

The YALMIP tool [22] in MATLAB® is used for the optimization of the room 

energy consumption. Since receding horizon control method is used, the receding 

horizon limit is chosen as one hour. On simulating the model in YALMIP, initial 

optimization results are obtained as shown in Figure 3.5. 

 

Figure 3.5: Optimization of energy used by the room using unconditioned 

optimization model for the room 

As can be seen in Figure 3.5, a feasible solution was not found. Room temperature 

and supply temperature coincide with each other indicating heat pump never started. 

To get the room and supply tempertaures within their respective bounds, a term is 

added in the objective function so that the weight on the bounds for the room 

temperature is dominant. This weight is called the penalty for violation on room 

temperature comfort bounds indicated by ρ. Thus optimization problem can be 

reframed as shown in equation from (3.27) to (3.32). 
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 min ∑ �̇�𝑘

𝑘∈𝑁

 

 

(3.27) 

 
𝑤ℎ𝑒𝑟𝑒 �̇�𝑘 =

[�̇� × 𝐶𝑝 × (|𝑇𝑠𝑘
− 𝑇𝑟𝑘

|)]

𝐶𝑂𝑃
+  𝜌[|𝜀𝑙𝑏𝑘

| + |𝜀𝑢𝑏𝑘
|] 

𝑎𝑛𝑑 𝑁 𝑖𝑠 𝑎 24 ℎ𝑜𝑢𝑟 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 
 

(3.28) 

 𝑠. 𝑡.       𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐹𝑑𝑘 
 

(3.29) 

 𝑇𝑟𝑘
≤ 𝑢𝑘 ≤ 32°𝐶 

 

(3.30) 

 𝑇𝑟𝑙𝑏
𝑘 − 𝜀𝑙𝑏𝑘

≤ 𝑇𝑟𝑘
≤ 𝑇𝑟𝑢𝑏

𝑘 + 𝜀𝑢𝑏𝑘
 

 

(3.31) 

 𝜀𝑙𝑏𝑘
≥ 0; 𝜀𝑢𝑏𝑘

≥ 0 

 

(3.32) 

where 𝜌 = penalty for violation of room temperature comfort bounds 

𝑘 = 0 𝑡𝑜 𝑁 − 1  

The value of 𝜌 needs to be tuned until the room temperature lies within its bounds as 

well as the energy consumed is the least. 

Figure 3.6 shows the simulation result with 𝜌=10. 
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Figure 3.6: Optimization of energy used by the room using conditioned optimization 

model for the room with 𝜌=10 

From Figure 3.6, it can be seen that the room temperature as well as the supply 

temperature lie within their respective bounds. The optimized electricity 

consumption by the heat pump is 4.4 kW/day. When the electricity consumption is 

calculated using the measured data (from the Lakeshore room using temperature 

sensors; section 2.3) and heat pump specifications data (Table 2.1), it is 5.3 kW/day. 

Thus the electricity consumption is reduced. The room temperature coincides with 

the lower bound from the sixth hour till the twentieth hour. The room and supply 

temperatures coincide in the first 4 hours and 21
st
 to 23

rd
 hours of the plot, thus 

giving zero energy consumption for that period. This behaviour of the optimized 

room temperature explains the decrease in the power consumption. The percent 

saving in the power utilization is 16.9% in a day or in a month. 

Different values of 𝜌 are tested to determine a feasible range of 𝜌 which gives the 

desirable power consumption (less than 5.3 kW/day). Table 3.3 summarizes the 

results. 
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Table 3.3: Power used by the heat pump for different values of ρ 

𝜌 Daily Power (kW) 

500 4.4 

2,000 4.4 

20,000 4.4 

 

The plots for all the values of 𝜌 are exactly the same as the Figure 3.6. From Table 

3.3, we can conclude that any value for 𝜌 greater than 10 till 20,000 gives the 

desirable result. For the energy minimization in this section, we will use 𝜌=2000 to 

significantly penalize any violation from room comfort temperature bounds. 

Now that we have the optimization model for the room, we will test it for different 

conditions of the outside environmental temperature. The data used in simulations in 

Figure 3.6, consists of the outside environmental temperature (𝑇𝑑4) of 0°C ±2°C 

which will be regarded as the base case in this chapter here onwards. The 

simulations for different environmental conditions are shown in Figure 3.7, Figure 

3.8 and Figure 3.9. 
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Figure 3.7: Optimization of energy used by the room on a mild day with 𝑇𝑑4 within 

15°C ±2°C. 
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Figure 3.8: Optimization of energy used by the room on a colder day with 𝑇𝑑4 

within -15°C ±2°C. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

18

20

22

24

26

28

30

Hour of day (starting from midnight)

T
e
m

p
e
ra

tu
re

 (
o
C

)

 

 

Upper bound for room temp.

Lower bound for room temp.

Room air temperature

Supply air temperature



 

 

54 

 

 

Figure 3.9: Optimization of energy used by the room on an extremely cold day with 

𝑇𝑑4 within -35°C ±2°C. 

It is observed that for all three cases of different environmental conditions, the room 

temperature and the supply temperature lie within their respective bounds. The room 

temperature coincides with its lower bound from 7
th

 to 20
th

 hour for all three cases 

and varying number of hours during the night for each case. The room temperature 

and supply temperature coincide for different number of hours for each case during 

the night. This behaviour of the room and supply temperatures is similar to the base 

case in Figure 3.6. Thus such behaviour gives us a pattern to expect during the 

optimization of the room model for any environmental temperature range lying 

between -35°C to 15°C. The different cases along with the original case (base case) 

are summarized in Table 3.4. As expected the power consumed by the heat pump 

increases as the outside temperature drops. 
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Table 3.4: Temperature ranges and power used by heat pump for each type of 

environmental condition 

Case Outside 

Temperature (°C) 

Daily power 

consumed (kW) 

Monthly power 

consumed (kW) 

Mild day  15 ± 2 1.9 57 

Cold day (base case)   0  ± 2  4.4 132 

Colder day -15 ± 2 6.7 201 

Extremely cold day -35 ± 2 10 300 

 

 

3.6  Comparison of MPC with Existing Controller 

On validating the MPC model, we need to compare the MPC model with the 

existing controller in Lakeshore Centre and analyse if MPC really optimizes the 

energy usage in the room. The existing controller is also applied to the same discrete 

model of the room as that developed for MPC. The limits for the room temperature 

during the day in MPC were decided based on ASHRAE guidelines [21]. The room 

temperature limits for existing controller during the day lie within the ASHRAE 

limits but have a smaller range. For existing controller the room temperature bounds 

and the sample time are similar to those used in MPC.  

Existing controller is an ON/OFF controller. On/off controller has a simple 

algorithm. Indoor temperature in buildings is maintained within a small range. The 

range for indoor temperature has a lower limit and an upper limit. When the indoor 

temperature drops below the lower limit of its range, the compressor of the heat 

pump is switched ON. The heat pump remains ON till the indoor temperature 

exceeds the upper limit of the thermal comfort range. The moment the indoor 

temperature above the upper limit is sensed, the heat pump is switched OFF. The 

heat pump then remains OFF till the indoor temperature drops below the lower limit 

of the thermal comfort range. Due to such behaviour, the controller is also called as 

a hysteresis controller.  

The OFF state of heat pump is included in the algorithm for the controller in the 

form of supply temperature equal to room temperature and hence there will be no 

heat transfer between the two. Using this algorithm, the simulation result is shown 

in Figure 3.10. 
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Figure 3.10: Simulation for performance of the Existing Controller with 𝑇𝑑4 within 

0°C ±2°C 

The data for outside temperature used for the simulation in Figure 3.10, is the same 

as that used for the cold day case in MPC called the base case. The energy used per 

day by the existing controller is 5.9 kW. Thus on comparing the cold case of both 

controllers, we observe that MPC consumes less power than the existing controller. 

Table 3.5: Comparison of MPC and Existing Controller 

Controller Daily power 

consumed (kW) 

Monthly power 

consumed (kW) 

% Power Saving by 

MPC over Existing 

Controller 

MPC 4.4 132 25.4% 

(base case) Existing 5.9 177 

 

The MPC does save power if used in place of existing controller for a cold day case. 

But it needs to be validated if MPC consumes lesser power compared to existing 

controller in any environmental condition. The simulation results for the existing 
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controller in other environmental conditions are shown in Figure 3.11, Figure 3.12 

and Figure 3.13. 

 

Figure 3.11: Simulation of Existing Controller on a mild day with 𝑇𝑑4 within 

15°C ±2°C. 
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Figure 3.12: Simulation of Existing Controller on a colder day with 𝑇𝑑4 having 

values -15°C ±2°C. 

 
Figure 3.13: Simulation of Existing Controller on an extremely cold day with 𝑇𝑑4 

within -35°C ±2°C. 
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On tabulating the results, we can compare the MPC and existing controller energy 

consumption for different environmental conditions. Table 3.6 summarizes the 

comparative results. 

Table 3.6: Comparison of MPC and Existing Controller for different environmental 

conditions 

Case Outside 

Temper

-ature 

(°C) 

MPC Existing Controller % Power 

Saving by 

MPC over 

Existing 

Controller 

Daily 

power 

consumed 

(kW) 

Monthly 

power 

consu-

med 

(kW) 

Daily 

power 

consumed 

(kW) 

Monthly 

power 

consu-

med 

(kW) 

Mild day  15 ± 2 1.9 57 5.7 171 66.6% 

Cold day 

(base 

case) 

  0  ± 2  4.4 132 5.9 177 25.4% 

Colder 

day 

-15 ± 2 6.7 201 7.8 234 14.1% 

Extremely 

cold day 

-35 ± 2 10 300 13.5 405 25.9% 

 

Thus it is observed that MPC saves a lot of power if used in place of the existing 

controller. As seen in Table 3.6, the power saving percentage decreases from 66.6% 

to 14.1% but increases again for an extremely cold day. The reason for this is the 

existing controller over heats the room. With rise in outside temperature, the 

overheating by existing controller does not decrease significantly whereas the heat 

supplied by MPC drops significantly. The percentage saving increases for extremely 

cold day case compared to colder day case because the heat supplied by MPC 

increases only by 100 kW while for existing controller it increases by 171 kW 

which means existing controller is overheating the room again. 

Thus MPC saves power significantly in a wide range of environmental conditions. 

This leads to the conclusion that MPC is an appropriate choice for energy 

minimization in the Lakeshore building.  
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Chapter 4  
 

4 Energy Cost Minimization and Energy 

Profile Peak Constraining 
 

 

Chapter 3 introduced and explained how MPC helps optimizing the power 

consumption in a building. MPC is a better algorithm than On/Off controller in 

minimizing the energy used up. Apart from the amount of energy used, one main 

concern for the consumers is the cost they are paying for the used energy. Chapter 1 

explained the different types of energy metering and dynamic pricing. 

Cost of electricity has two parts namely, a fixed part and a variable part. The fixed 

part is decided by the supplier side and the variable part is determined by the 

consumer side. The fixed cost of electricity [23] is determined by the cost of fuel 

used to produce electricity, season, type of zone supplied (residential or commercial 

or industrial), government policies, market status, maximum allowable load to be 

supplied to the zone, etc. The variable cost of electricity [24] is determined by how 

much, when (time of day) and for what purposes the electricity is used by the 

consumer.  

There are different plans for electricity pricing suitable for different types of 

consumers. The fixed rate plan for electricity pricing provides a fixed rate for a 

period of time and no changes are made in the rate even if the cost of electricity 

changes in the market. This type of plan is suitable for consumers with a fixed or 

limited budget and this way they can determine the price they will have to pay for 

the power they will use during the period of their contract. The disadvantage of this 

plan is that, if the cost of electricity drops in the market, the consumer is stuck with 

the initial higher price till his contract gets over. Another plan is the variable pricing 

of electricity which is mostly used by commercial businesses and industries. This 

plan provides rates based on whole sale prices. If the prices in the market go up, 

consumers pay more, if the prices in the market drop, consumers pay less. One of 

the examples of variable pricing [24] is time of use pricing. For time of use pricing, 

prices are fixed for a particular period of time and change in prices is as frequent as 
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twice per year. The prices are high for a particular period if it is known that the use 

of power is high during that period. The prices are low for a particular period if it is 

known that the use of power is less during that period.  

Another example of variable pricing is the real time pricing [24]. It is also called 

dynamic pricing since the frequency at which the prices change is as high as every 

hour of the day. Based on previous usage of power, the prices are determined for the 

consequent hour and provided to the consumer in advance. It helps consumers to 

manage their power consumption according to the cost of electricity provided. The 

consumer can schedule the low priority devices during the period in which the cost 

is low.  This predicted profile for cost of electricity is useful in Model Predictive 

Control (MPC) algorithm which is implemented to reduce the power consumption 

as well as cost of power used.  

This chapter deals with the MPC algorithm to reduce the cost of electricity used by 

the consumer. Appropriate objective function is determined leading to lowest cost 

for the consumer. The second contribution from this chapter is to design an MPC 

algorithm for power peak shaving of building load. Thus the building peak power 

load will not exceed a maximum allowable load from the distribution power grid. 

To this end, the MPC algorithm is extended to all the heating zones connected to the 

node which supplies power to the Lakeshore Centre. An optimized energy profile is 

obtained which lies within the maximum allowable load profile at the node for the 

Lakeshore Centre.  

 

4.1  Cost of Energy by Energy Minimization 

In Chapter 2, an energy model for a room was developed and in Chapter 3, the 

energy model was used to form MPC model with energy minimization as the 

objective function. The output of base case MPC optimization (section 3.5) is the 

room temperature and supply temperature profiles which are used to determine the 

amount of power (kWh/day) consumed. The power calculated in each hour can be 

multiplied by the electricity pricing data to determine total cost the consumer has to 

pay for the power used per day. The pricing data used in this thesis is the dynamic 

pricing predicted over every hour, the data for which was obtained from 

Midcontinent Independent System Operator (MISO) Inc. [25]. The pricing data for 

Michigan hub for 24 hours is shown in Figure 4.1. 
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Figure 4.1: Dynamic Pricing data for Michigan hub for 24 hours [25] 

To get the cost close to real cost, 100W power is added to the power profile 

obtained in base case of section 3.5 (Figure 3.6) since the fan of the heat pump 

keeps running continuously even though the compressor turns on and off.  When 

pricing data from [25] is multiplied by the energy profile (including fan energy) for 

24 hours, the total cost obtained with energy minimization is $0.56 per day for one 

room. So the monthly cost for the consumer for one room is $16.8. This is the cost 

of electricity obtained when MPC uses energy equation as its objective function and 

dynamic pricing data is used after optimization result is obtained for minimizing 

energy consumption. The next section deals with MPC problem with dynamic 

pricing data included in the objective function itself.  

Chapter 3 included existing On/Off controller which was proved to use more power 

than MPC. This existing On/Off controller not only uses more power but when 

combined with dynamic pricing gives more cost. For example, if the energy profile 

obtained in base case of section 3.6 (adding 100W of fan power to it) is multiplied 

by dynamic pricing profile for 24 hours, it gives $0.59 per day and monthly room 

energy cost is $17.7 which is more than the cost obtained in energy minimization by 
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MPC. Thus for reducing power usage as well as its cost, MPC is better than existing 

On/Off controller. 

 

4.2  Cost of Energy by Cost Minimization 

MPC using energy minimization was proved to be a better algorithm to minimize 

energy in Chapter 3. Now to determine if energy minimization gives lower cost of 

energy for the consumer, we determine cost of energy using a different objective 

function. In the section 4.1, dynamic pricing was used after optimization was 

completed. In this section, dynamic pricing is used in the objective function leading 

to cost minimizing MPC algorithm. 

The cost minimizing MPC problem has the same structure as the energy minimizing 

MPC problem in section 3.4 from equations (3.21) to (3.26) except the objective 

function for cost minimization is: 

 min ∑ 𝐶𝑜𝑠𝑡𝑘

𝑘∈𝑁

 

 

(4.1) 

 
𝐶𝑜𝑠𝑡𝑘 =

[�̇� × 𝐶𝑝 × (|𝑇𝑠𝑘
|)] × 𝑃𝑟

𝐶𝑂𝑃 × 106
× 𝛼 +  𝜌[|𝜀𝑙𝑏𝑘

| + |𝜀𝑢𝑏𝑘
|] 

𝑎𝑛𝑑 𝑁 𝑖𝑠 𝑎 24 ℎ𝑜𝑢𝑟 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 
 

(4.2) 

where 𝐶𝑜𝑠𝑡𝑘 = cost of electricity as per power usage in k
th

 hour.  

 𝑃𝑟 = predicted cost of electricity for k
th

 hour per MWh ($/MWh) 

 α = weight on dynamic pricing term = 1 

The cost is calculated based on the heat supplied by the heat pump to the room. 

Thus the objective function is a function of 𝑇𝑠𝑘
 and 𝑃𝑟 only and not a function of 

room temperature 𝑇𝑟𝑘
. When optimization is carried out, the result obtained is 

shown in Figure 4.2. The cost calculated throughout the rest of this chapter includes 

100W fan power as mentioned in section 4.1. 
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Figure 4.2: Room temperature and supply temperature profiles after optimizing the 

MPC model for cost minimization. 

As can be seen from Figure 4.2, the solution is feasible. The cost of power used in 

24 hours is $0.56 per day which is the same as that obtained after energy 

minimization. In equation (4.2), the weight α on the dynamic pricing term in the 

objective function is increased to 10, to see if it affects the end cost of power. On 

optimizing this new objective function, the result obtained is shown in Figure 4.3. 
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Figure 4.3:  Room temperature and supply temperature profiles after optimizing the 

MPC model for cost minimization with dynamic pricing weight α = 10. 

 

As can be seen from Figure 4.3, on increasing the weight on dynamic pricing, we 

still get a feasible solution with cost of power for 24 hours equal to $0.47. This leads 

to a monthly cost of $14.1 for one heating zone. This cost is less than that obtained 

after energy minimization which was $16.8 per month for one heating zone. Figure 

4.4 gives the optimization result if the weight α on dynamic pricing is increased to 

50. It gives an infeasible solution. If α is changed to 15, it gives the result shown in 

Figure 4.5 and the cost as $0.48 per day. The Figure 4.5 shows that the room 

temperature violates the lower bound between 20
th

 and 21
st
 hour. In addition, the 

cost is higher than that when α is 10. Thus value of α equal to 10 is chosen.  
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Figure 4.4: Room temperature and supply temperature profiles after optimizing the 

MPC model for cost minimization with dynamic pricing weight α = 50. 

 
Figure 4.5: Room temperature and supply temperature profiles after optimizing the 

MPC model for cost minimization with dynamic pricing weight α = 15. 
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The resulting MPC objective function for cost minimization is the one given in 

equations (4.1) and (4.2) with α=10. 

 

 

4.3  Comparison with On/Off Controller 

Table 4.1 compares the energy cost by the existing On/Off controller (section 3.6) 

with MPC. The result shows existing On/Off controller gives the highest cost for 

power consumption. Table 4.1 shows that using price of electricity in the objective 

function itself, reduces the cost compared to using only energy equation in the 

objective function. Figure 4.6 shows the comparison of cost profiles of all three 

controllers. The dynamic pricing inclusive cost function gives supply temperature 

and room temperature values in such a way that more power is used when the price 

is low and less power is used when the prices are higher. Hence it results in lower 

end cost of electricity compared to that in section 4.1. Figure 4.7 shows that MPC 

resulted in higher power consumption when price is low and lower power 

consumption when price is higher. The power consumption also depends if the room 

temperature is within the comfort zone or not. For example, in first four hours, even 

though the price is very low, power used is close to zero Watt since the room 

temperature is within the comfort zone. At the fifth hour, the lower limit of the 

comfort zone rises and hence to raise the room temperature, the power consumed is 

the highest at the fifth hour.  

 

Table 4.1: Comparison of end cost of electricity consumed in one room i.e. one 

heating zone through different controllers. Existing On/Off controller gives the 

highest cost. Including dynamic pricing in objective function reduces cost as against 

using it post optimization as done in energy minimization. 

Controller Daily Cost ($) Monthly Cost ($) 

Existing On/Off Controller 0.59 17.7 

MPC - Energy minimization 0.56 16.8 

MPC - Price minimization 0.47 14.1 
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Figure 4.6: Comparison of cost profiles of existing On/Off controller, MPC with 

energy minimization and MPC with price minimization. Existing On/Off controller 

shows the highest peaks while MPC with price minimization shows the lowest lying 

peaks. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Hour of day (starting from midnight)

C
o
s
t 

($
)

 

 

Existing On/Off Controller

MPC - Energy Minimization

MPC - Price Minimization



 

 

69 

 

 

Figure 4.7: Trend of power consumption using price minimizing algorithm in 

comparison with the Dynamic Pricing. 

 

 

4.4  MPC and Energy Profile Peak Constraining for a Building 

A grid supplying electricity has many nodes. Each node can be connected to 

different loads such as buildings. The distribution network consisting of nodes helps 

in management of loads. By information exchange, between distribution grid and 

building energy management system (BMS), buildings can ensure that they will not 

violate maximum allowable load from the grid. Here a case study is presented to 

illustrate how BMS can use optimization of HVAC loads to avoid violation of 

maximum allowable load. To this end, it is assumed that Lakeshore Centre is 

connected to node 18 in the 33-node standard IEEE distribution feeder [19]. Results 

from reference [19] are used to determine maximum allowable load for Lakeshore 

Centre. While optimizing the building load according to predicted dynamic pricing, 

care must be taken that the load at the node during low price period does not exceed 
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the maximum allowable load at that particular node. Figure 4.8 shows the maximum 

allowable load [19] developed for the node at which Lakeshore Centre is connected. 

It is assumed that the node supplies power to six buildings with 20 heating zones 

each.   

 

Figure 4.8: Maximum allowable load at the node at which Lakeshore Centre is 

connected [19].  

Throughout the thesis till previous section 4.2, the energy model represents one 

room, i.e. one heating zone. A scale factor of 20 is used to scale up the energy 

model to a building. A further scale factor of six is used to represent power 

consumption by six buildings at node 18. In addition to the HVAC load predicted by 

MPC, lighting and other appliances load is also considered in order to compare the 

total load of buildings with the maximum allowable load. For lighting and other 

appliances load, the distribution is adapted from [19] as shown in Figure 4.9. 
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Figure 4.9: Profile of the non-HVAC load i.e. lighting and other appliances load for 

24 hours adapted from [19] 

 

On scaling up the model, the HVAC load for Lakeshore Centre is obtained through 

MPC algorithm, and then added to the non-HVAC load to give the profile for total 

load. This total load of the building is then used to compare the demand side load 

with the maximum allowable load at the node. Figure 4.10 shows the total load 

profile for Lakeshore Centre.  
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Figure 4.10: HVAC load (MPC) and non-HVAC load profiles for one building 

(Lakeshore Centre) are added to obtain total building load. Data in this figure is for 

one building, so this load is multiplied by six to determine total load at node#18. 

 

Figure 4.11 shows the total optimized load of six buildings in comparison with 

maximum allowable load at the node. As seen from the figure, the total load exceeds 

the maximum allowable load from fifth to sixth hour. HVAC optimization is run by 

adding a new constraint, i.e. maximum allowable load. It is found that violation of 

maximum load can be avoided if the room temperature constraints are relaxed. On 

relaxing the room temperature constraints, the total load of all six buildings together 

lies within the maximum allowable load. The minimum relaxation in room 

temperature that brings building loads within the maximum allowable load is 0.7°C 

as shown in Figure 4.12. This shows the benefit of exchange between the 

distribution grid and optimizer of building HVAC systems. 

 

The room temperature profile obtained upon relaxing room temperature constraints 

by 0.7°C is shown in comparison with original room temperature constraints in 

Figure 4.13. The figure shows the amount of violation in room temperature that is 

allowed in order to shave the peaks in building loads. 
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Figure 4.11: Total optimized load of six buildings exceeds the maximum allowable 

load from fifth to sixth hour since the dynamic pricing is very low during that 

period. 

 
Figure 4.12: Total optimized load of six buildings lies within the maximum 

allowable load after relaxing the indoor temperature constraints by 0.7°C. 
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Figure 4.13: Room temperature and supply temperature profiles obtained upon 

relaxing room temperature bounds by 0.7°C are shown along with original room 

temperature constraints. 

 

Thus over a series of steps an MPC algorithm was developed considering one goal 

at a time in the order of energy minimization, cost minimization and lastly 

considering maximum allowable load profile to avoid overloading of electricity 

power distribution grid.  
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Chapter 5  
 

5 Conclusions and Future Work 
 

 

Model Predictive Control was implemented successfully by predicting an energy 

profile for a building in order to optimize the power consumption and reduce the 

cost of power consumption. This chapter summarizes all the conclusions from this 

thesis and future work is recommended. 

 

 

5.1  Conclusions  

 Smart building in a smart grid is capable of adjusting its power consumption 

according to the load on the grid and the predicted price of electricity. When 

power consumption is at its peak, the price of electricity rises because of 

large consumption while the prices drop in low power consumption period. 

The controller in a smart building can adjust controllable load (of HVAC) to 

use less energy during peak period and schedules maximum power usage in 

low price period.  

 A discrete state space resistance-capacitance (RC) model representing the 

thermal circuit was developed for a room with a ground source heat pump. 

On simulation of the model using input as supply temperature by heat pump 

and disturbance as outside environmental temperature, the resultant room 

temperature had a deviation of less than 1°C from the measured room 

temperature. This validated the model.  

 A sensitivity analysis was carried out for the model to determine the 

parameters that affect the room temperature the most when changed by 10%. 

The parameters surface area of window, conductivity of outside wall, 

thickness of outside wall and convection coefficient for inner three walls are 

found to have a significant effect on the room temperature.  
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 Room temperature has a positive sensitivity with respect to thickness of 

outside wall whereas a negative sensitivity with respect to conductivity of 

outside wall, surface area of window and convection coefficient of inner 

three walls.  

 In order to reduce/optimize the energy consumption of the room, Model 

Predictive Control (MPC) using Receding Horizon Control method was 

implemented. A predicted data for outside temperature was used. A 

prediction horizon of one hour was considered. Receding horizon control 

method determines room temperature and supply temperature through 

optimization for a prediction horizon based on the outside temperature 

predicted for that particular horizon and then proceeds to next prediction 

horizon. The objective function for minimizing the energy consumption is 

the energy equation for heat used by the room. For optimization constraints, 

room temperature limits were determined by ASHRAE standards [21]. MPC 

result was compared with existing On/Off controller for different 

environmental conditions; on a typical cold day (0°C ± 2°C), MPC uses 

25.4% less power than existing On/Off controller. It was proved that MPC 

results in minimum power consumption in all environmental conditions. 

Thus MPC is consistent irrespective of outside conditions.  

 To achieve reduction in total cost of power consumption, it was proved that 

using dynamic pricing data in the objective function itself is more effective 

than using it after optimization of energy. The energy used is high when 

dynamic pricing is low and energy used is low when the price is high. On a 

typical cold day (0°C ± 2°C), for a room, the cost function including 

dynamic pricing gives a daily cost of $0.47 which is less than that given by 

MPC with energy minimization algorithm ($0.56) and the one given by 

existing On/Off controller ($0.59).  

 On obtaining the most suitable controller for one room, the model and 

algorithm was scaled up to first represent a building with 20 heating zones 

and then six buildings with 20 heating zones each. All the six buildings were 

connected at the same node in the grid. The HVAC profile obtained for six 

buildings by MPC with price minimization along with non-HVAC load 

(adopted from [19]), was compared with the maximum allowable load at the 

node. One of the peaks from the demand side profile exceeds the maximum 

allowable load. To get the peak within the maximum allowable load, indoor 

thermal comfort limits were relaxed by 0.7°C. Thus a profile for demand 
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side load with optimized power consumption reduced total cost of energy 

and also constrained peaks in demand side load 

.  

 

5.2  Future Work 

Some recommendations for future work are, 

 The room temperature control achieved in the thesis is by controlling the 

supply temperature provided by the heat pump while keeping the mass flow 

rate of air into the room constant. Room temperature control can also be 

achieved by varying the mass flow rate of air keeping a constant temperature 

of air supplied by heat pump.  

 Radiation and internal heat generation can be considered in the building 

HVAC model to improve accuracy of building model.  

 Convection coefficient of heat transfer for outside air is assumed to be 

constant. A convective heat coefficient varying according to outside 

conditions (e.g. wind, relative humidity, etc.) can be considered to make the 

building model more practical.  

 The COP considered in this thesis is constant (i.e., COP= 3.2) since ground 

source heat pump is used in this thesis (ground temperature is almost 

constant). Given the dependence of heat pump's COP on the outside 

temperature, COP should be considered variable for air-source heat pumps. 

As an extension to the work in this thesis, a general heat pump model with 

varying COP for air-source heat pumps can be developed and its effect on 

optimization can be studied. 

 The MPC framework from this thesis can be experimentally implemented on 

Michigan Tech's Lakeshore Centre. 
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Appendix A  

The state space matrices for building energy model are specified in this section. 

 State matrix: 

𝐴 =

𝑔0

𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑟 × 𝑅𝑤1𝑖𝑛

𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑟 × 𝑅𝑤2𝑖𝑛

𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑟 × 𝑅𝑤3𝑖𝑛

𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑟 × 𝑅𝑤4𝑖𝑛

𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑤1 × 𝑅𝑤1𝑖𝑛

𝑔1 0 0 0

𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑤2 × 𝑅𝑤2𝑖𝑛

0 𝑔2 0 0

𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑤3 × 𝑅𝑤3𝑖𝑛

0 0 𝑔3 0

𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑤4 × 𝑅𝑤4𝑖𝑛

0 0 0 𝑔4

    

where, 

𝑔0 =
𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑟
× [

−1

𝑅𝑤1𝑖𝑛

+
−1

𝑅𝑤2𝑖𝑛

+
−1

𝑅𝑤3𝑖𝑛

+
−1

𝑅𝑤4𝑖𝑛

+ (�̇� × 𝐶𝑝) +
−1

𝑅𝑤𝑖𝑛
+

𝐶𝑟

𝑇𝑠𝑎𝑚𝑝𝑙𝑒
] 

𝑔1 =
𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑤1
× [

−1

𝑅𝑤1𝑖𝑛

+
−1

𝑅𝑤1𝑜𝑢𝑡

+
𝐶𝑟

𝑇𝑠𝑎𝑚𝑝𝑙𝑒
] 

𝑔2 =
𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑤2
× [

−1

𝑅𝑤2𝑖𝑛

+
−1

𝑅𝑤2𝑜𝑢𝑡

+
𝐶𝑟

𝑇𝑠𝑎𝑚𝑝𝑙𝑒
] 

𝑔3 =
𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑤3
× [

−1

𝑅𝑤3𝑖𝑛

+
−1

𝑅𝑤3𝑜𝑢𝑡

+
𝐶𝑟

𝑇𝑠𝑎𝑚𝑝𝑙𝑒
] 

𝑔4 =
𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑤4
× [

−1

𝑅𝑤4𝑖𝑛

+
−1

𝑅𝑤4𝑜𝑢𝑡

+
𝐶𝑟

𝑇𝑠𝑎𝑚𝑝𝑙𝑒
] 
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 Input matrix: 

𝐵 =

𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑟 × �̇� × 𝐶𝑝

0
0
0
0

 

 

 Disturbance matrix: 

𝐹 =

0 0 0
𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑟 × 𝑅𝑤𝑖𝑛

𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑟 × 𝑅𝑤1𝑜𝑢𝑡

0 0 0

0
𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑟 × 𝑅𝑤2𝑜𝑢𝑡

0 0

0 0
𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑟 × 𝑅𝑤3𝑜𝑢𝑡

0

0 0 0
𝑇𝑠𝑎𝑚𝑝𝑙𝑒

𝐶𝑟 × 𝑅𝑤4𝑜𝑢𝑡

 

 Output matrix: 

𝐶 = 1 0 0 0 0 
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Appendix B  

Bidirectional Optimal Operation of Smart Building-to-Grid 

Systems [19] 

This section gives a brief description of the paper by Razmara, M., et. al. This paper 

presents bidirectional optimization of energy, i.e. from the building side as well as 

from the grid side. The objective function chosen is minimizing the cost of energy 

consumed on the building side while on the grid side it is maximizing the load 

penetration by maximizing the load factor.  

The test bed for demand side optimization is the Lakeshore Centre, at Michigan 

Technological University. This building uses ground source heat pumps with 

nominal COP as 3.2. A resistance-capacitance state space model was developed for 

the building and validated using the data obtained from Building Management 

System (BMS) as well as the temperature sensors in the building (accuracy ±2°C). 

The states of the model are the temperature of the nodes in the model (room and the 

four walls), the input is the air mass flow rate and the supply air temperature from 

the heat pump and the disturbance is the temperatures outside the four walls. The 

state space equations act as the equality constraints in the optimization model of the 

building. The inequality constraints for optimization are the room air temperature 

limits, supply air temperature limits and load limits from the grid during 

bidirectional optimization.  

The model of the grid is developed by considering standard single phase 12.66 kV, 

33-node distribution feeder. A 32-step regulator (tap position ranging from -16 to 

+16) and capacitor banks connected at 2 nodes of the grid are considered as control 

equipment in the distribution grid. The distribution feeder consists of the 

distribution lines, capacitor banks, regulators and the loads. The loads that are used 

in the model are constant current load, constant impedance load and constant power 

load.  

The models for the building as well as the grid were implemented in the 

optimization process with the assumptions, (1) 4 arbitrary nodes from the grid are 

considered for optimization, (2) number of buildings connected at the nodes is 6, 3, 

5 and 8 respectively, and (3) each building has 20 heating zones; all buildings have 

same load profiles and indoor comfort limits. The optimization is carried out using 

Model Predictive Control (MPC) methodology since predicted dynamic pricing and 
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weather forecast are used. Optimization on the demand side (building) was carried 

out using YALMIP toolbox from MATLAB and the supply side (grid) optimization 

was carried out using GAMS. The results for optimization are discussed only for 

one node, i.e. node #18. The demand side optimization results are compared with 

the existing On/Off controller in the building and it was concluded that a 26% cost 

saving and 16% energy saving occurred due to MPC compared to unoptimized 

On/Off controller.  

The bidirectional optimization process is shown schematically in the Figure B.1. 

The process has four optimizations. The process starts with building optimization I 

for cost minimization using the building load requirements (equality constraints) 

and the temperature bounds (inequality constraints). The resultant optimized load 

profile is used to check if it is within the grid operational limits. If the demand side 

load is not within grid limits, a grid optimization I is carried out for maximizing 

load penetration. The resultant load profile is the maximum allowable load for the 

demand side. Using this maximum allowable load as one of the constraints, building 

optimization II is carried out for cost minimization. If the solution is infeasible, the 

building load requirements are modified by either changing the temperature bounds 

or utilizing energy from the energy storage system of the building and thereafter 

building optimization I is carried out again. At any point in the iterative process, if 

the results of building optimization I and II are feasible, the process proceeds to grid 

optimization II to maximize the load factor.  
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Figure B.1: Flow chart for B2G bidirectional optimization [© [2015] IEEE] 

On comparing bidirectional optimization results with the existing On/Off controller, 

it was observed that due to bidirectional control, the building cost saving was 25% 

and building energy saving was 17%. By using bidirectional control in place of 

demand side optimization control, the building cost saving decreased by 1% while 

building energy saving increased by 1%.  
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YALMIP Toolbox and Basics [22] 

YALMIP is a toolbox in MATLAB which provides a platform to develop and solve 

optimization problems for levels simple to tough. The toolbox was developed in the 

first place to solve semidefinite programming (SDP) and linear matrix inequalities 

(LMI). Later the toolbox was evolved so that it can be used for other types of 

optimization programming such as linear programming, mixed integer 

programming, quadratic programming, etc. YALMIP interfaces external solvers in 

order to obtain feasible solution for different optimization applications. Based on the 

type of problem defined, YALMIP chooses a solver on its own and executes it. If 

YALMIP does not have a certain solver needed to evaluate an optimization, it 

converts the optimization problem from one form to other (for example, from 

second order cone constraints to LMIs), and solves it with the available solver. The 

different solvers used in YALMIP are SeDuMi, SDPT3, PENNON, CPLEX, branch 

and bound (inbuilt solver in YALMIP), etc. 

An optimization problem can be defined in YALMIP in three steps namely, 

(1)defining parameters and variables, (2)defining objective function and constraints, 

(3)using a command to solve the problem. 

The standard MATLAB commands and syntax can be used in YALMIP. Thus 

parameters can be defined by basic MATLAB declaration syntax. The decision 

variables can be defined by using the command ‘sdpvar’. The syntax to define a 

symmetric P matrix with dimension b using this command is as shown below, 

 𝑃 = 𝑠𝑑𝑝𝑣𝑎𝑟(𝑏, 𝑏,′ 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐′,′ 𝑟𝑒𝑎𝑙′); (B.1) 

If the matrix P is a real square matrix, the command does not require specifying 

symmetric and real and can be simply written as, 

 𝑃 = 𝑠𝑑𝑝𝑣𝑎𝑟(𝑏, 𝑏); (B.2) 

If the matrix contains complex numbers, then real in equation (B.1) can be replaced 

by complex. If the matrix is fully parameterized, the terms ′𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐′ and ′𝑟𝑒𝑎𝑙′ 

in equation (B.1) are replaced by ′𝑓𝑢𝑙𝑙′.  

If receding horizon control is being used during optimization, the objective function 

and the constraints are specified in a for loop. The constraints can be specified in a 

matrix using MATLAB syntax or sdpvar command. The operators > and < can also 

be used to represent semidefinite constraints (≥ and ≤ respectively). To solve the 
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optimization problem for every prediction horizon, the command used is ‘solvesdp’. 

In the beginning solvesdp used to solve only semidefinite problems but now, it can 

be used for linear programming, quadratic programming, second order cone 

programming, etc. The structure of a receding horizon control for a control horizon 

of 24 hours in YALMIP can be shown as,  

>> define parameters and matrices using standard MATLAB syntax; 

>> for j=1:24 

>> u= sdpvar(repmat(1,1,24),repmat(1,1,24)); % input variable 

>> objective = 0; 

>> constraints = [ ]; 

>> for k=1:24 

>> 𝑥𝑘 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐹𝑑𝑘 ; 

>> objective = objective + 𝑓(𝑥)𝑘 ; 

>> constraints = [constraints, 𝑥𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 ≤ 𝑥𝑘 ≤ 𝑥𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑]; 

>> constraints = [constraints, 𝑢𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 ≤ 𝑢𝑘 ≤ 𝑢𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑]; 

>> constraints = [constraints]; 

>> end; 

>> solvesdp(constraints,objective); 

>> 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐹𝑑𝑘 ; 

>> 𝑥𝑘 = 𝑥𝑘+1; 

>> end;  

One can add more parameters to store the values of the resultant variable in a 

matrix/vector form. The command repmat(1,1,24) produces a 24×24 tiling of (1,1). 
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Appendix C  

Letters of Permission: 

 

Letter from Mr. Gregory Kaurala: 
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Permission Email from Meysam Razmara: 

Dear Madhura, 

I hereby grant permission to you for using the RC model schematic diagram, non-

HVAC load profile, nodal information from the electrical distribution feeder and 

related data of the experimental setup Lakeshore Center from the paper entitled: 

“Bidirectional Optimal Operation of Smart Building-to-Grid Systems” submitted to 

2015 American Control Conference, in your MS thesis.  

Sincerely, 

Meysam Razmara 

 

Permission to reuse IEEE material: 

Thesis / Dissertation Reuse 

The IEEE does not require individuals working on a thesis to obtain a formal reuse 

license, however, you may print out this statement to be used as a permission grant:  

Requirements to be followed when using any portion (e.g., figure, graph, table, or 

textual material) of an IEEE copyrighted paper in a thesis: 

1) In the case of textual material (e.g., using short quotes or referring to the work 

within these papers) users must give full credit to the original source (author, paper, 

publication) followed by the IEEE copyright line © 2011 IEEE.  

2) In the case of illustrations or tabular material, we require that the copyright line © 

[Year of original publication] IEEE appear prominently with each reprinted figure 

and/or table.  

3) If a substantial portion of the original paper is to be used, and if you are not the 

senior author, also obtain the senior author’s approval.  

Requirements to be followed when using an entire IEEE copyrighted paper in a 

thesis:  
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1) The following IEEE copyright/ credit notice should be placed prominently in the 

references: © [year of original publication] IEEE. Reprinted, with permission, from 

[author names, paper title, IEEE publication title, and month/year of publication]  

2) Only the accepted version of an IEEE copyrighted paper can be used when 

posting the paper or your thesis on-line. 

3) In placing the thesis on the author's university website, please display the 

following message in a prominent place on the website: In reference to IEEE 

copyrighted material which is used with permission in this thesis, the IEEE does not 

endorse any of [university/educational entity's name goes here]'s products or 

services. Internal or personal use of this material is permitted. If interested in 

reprinting/republishing IEEE copyrighted material for advertising or promotional 

purposes or for creating new collective works for resale or redistribution, please go 

to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to 

learn how to obtain a License from RightsLink.  

If applicable, University Microfilms and/or ProQuest Library, or the Archives of 

Canada may supply single copies of the dissertation. 
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Appendix D  

Thesis Files Summary 

 

Following files were used for this thesis. Data is arranged in form of tables. 

 

Table D.1: Excel files for experimental data and MATLAB simulation output data 

Sr. # File Name Description 

1. Lakeshore_sensor_data 
Experimental data from temperature 

sensors in Lakeshore Centre 

2. Dynamic_Pricing_data 
Dynamic pricing data for Michigan 

hub [25] 

3. Maximum_allowable_load_node18 
Maximum allowable load for 

Node#18  [19]  

4. Sensitivity_data 

Sensitivity of room temperature 

against various parameters and 

variable obtained through simulations 

 

 

Table D.2: MATLAB workspace data required to compare cost profiles of MPC and 

On/Off controllers 

Sr. # File Name Description 

1. existing_on_off_cost_profile 
Output data from existing On/Off 

controller simulation 

2. energy_min_cost_profile 
Output data from MPC with energy 

minimization simulation 

3. price_min_cost_profile 
Output data from MPC with price 

minimization simulation 
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Table D.3: MATLAB scripts for building model validation, simulation of MPC and 

On/Off controllers, plotting cost profiles and sensitivities 

Sr. # File Name Description 

1. validation 
Contains discrete model of room and 

its simulation 

2. sensitivity 

Plots sensitivity of room temperature 

with respect to various parameters 

and variables 

3. existing_controller Contains existing On/Off controller  

4. MPC_for_energy_and_price 

Contains MPC for energy 

minimization as well as price 

minimization 

5. cost_profile_comparison 

Plots cost profiles of existing 

controller, MPC with energy and 

price minimization for comparison 

 

 


